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Within the covariant Lagrangian formalism the metric energy-momentum tensor
and the equations of motion for spinor particles with polarizabilities in the electro-
magnetic field have been obtained. The contribution of static polarizabilities to the
Compton scattering amplitude was determined.
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1. Introduction

At present time the description of the Compton scattering on hadrons is oriented on nonrel-
ativistic Hamiltonian function [1, 2]. However for the extraction of the more essential experi-
mental and theoretical information about hadron polarizabilities not only from the Compton
scattering process but from other virtual and real two-photon process it is necessary to use the
Lagrangian of electromagnetic field interaction with polarizable particle in covariant form.

The covariant Lagrangian of electromagnetic field interaction with polarizable particle was
constructed in ref. [3–5]. So to find the covariant form of the Lagrangian in [3] the phenomeno-
logical formfactor approach for the construction of the Lagrangian covariant spin structures was
used. The Lagrangian developed in ref. [4, 5] allowed us to determine the energy-momentum
tensor of electromagnetic field interaction with polarizable particles as well as the the equations
of motion and the Compton scattering amplitude.

2. Lagrangian

The total interaction Lagrangian of the spin-1/2 particles with the electromagnetic field will
be consists from the Lagrangian for free electromagnetic field Le−m, the spinor or Dirac’s field
LD, the interaction Lagrangian of the free electromagnetic field with the Dirac’s field Lintand
the Lagrangian which considers electric and magnetic polarizabilities of particles Lα0β0 [6]:

Ltotal = Le−m + LD + Lint + Lα0β0 . (1)

So the total Lagrangian for the moving of the charged, polarizable, spinor particle in the
electromagnetic field write out in the following form:

L = −1

4
F 2 +

i

2
ψ

∧↔
∂ ψ −mψψ − eψÂψ + Lα0β0 . (2)
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The Lagrangian of electromagnetic field interaction with polarizable 1/2-spin particle can be
presented as:

Lα0β0 =
2π

m

[
α0FµρFσ

µ − β0F̃µρF̃σ
µ
]
Θ̃ρσ, (3)

where F σκ and F̃µρ =
1

2
εµρσκF

σκ are usual and dual tensors of electromagnetic field, ε0123 = −1.

Θ̃ρσ =
1

2
(Θρσ + Θσρ), (4)

Θρσ is the energy-momentum tensor of spinor field and given by

Θρσ =
i

2
ψγρ

↔
∂σ ψ, (5)

here
↔
∂µ=

−→
∂µ −←−∂µ, γρ are the Dirac’s matrixes.

The polarizabilities α and β introducing in the expression (3) are used in hadronic physic
as static electric and magnetic polarizabilities.

To inserting the tensor

G(S)Iµν = −4π

m

{
(α0 − β0)

[
F µσΘ̃σ

ν − F νσΘ̃σ
µ
]

+ β0Θ̃ρ
ρF µν

}
, (6)

the Lagrangian Lα0β0 can be rewritten as

Lα0β0 = −1

4
FµνG

(S)Iµν . (7)

3. The equations of motion

For interaction of the spinor and electromagnetic fields the next system of Lagrange’s equa-
tions are used [6]:

− ∂L

∂Aµ

+ ∂γ
∂L

∂(∂γAµ)
= 0,

−∂L

∂ψ
+ ∂γ

∂L

∂(∂γψ)
= 0,

−∂L

∂ψ
+ ∂γ

∂L

∂(∂γψ)
= 0,





(8)

where Aµ – is the vector-potential of the electromagnetic field, ψ and ψ– are wave functions of
spin-1/2 particles.

Taking into account the Lagrangian (2) and (8) we have got the equations of motion for
the polarizable particles in the electromagnetic field

− iγα(∂αψ) + ψm + eγαψAα +
iπ

m
(2γα(∂νψ) ·Kν

α + γαψ(∂νK
ν
α)) = 0, (9)

i(∂αψ)γα − ψm + eψγαAα − iπ

m
(2(∂νψ)γα ·Kν

α − ψγα(∂νK
ν
α)) = 0, (10)

− ∂γF
γµ − e(ψγµψ)+

+ ∂γ

{
iπ

m

[
(α0 − β0)

(
F µν(ψγγ

↔
∂ν ψ) − F γν(ψγµ

↔
∂ν ψ)+

+ Fαγ(ψγα

↔
∂µ ψ)− Fαµ(ψγα

↔
∂γ ψ)

)
− 2β0F

γµ(ψγν
↔
∂ν ψ)

]}
= 0, (11)
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where Kν
µ = α0FµρF

ρν − β0F̃µρF̃
ρν .

The expression (11) we can be rewritten in a view

∂µF
µν = eψγνψ + j(M)ν , (12)

where j(M)ν = −∂µG
(S)Iµν .

4. Energy-momentum tensor for interaction of the electromag-
netic field with spinor particle

To understand that the Lagrangian (2) is correct it is enough to define Hamiltonian for
interaction of electromagnetic field with polarizable particle spin-1/2 and Compton scattering
amplitude of this particle.

In the case of the spinor and electromagnetic fields the expression for energy-momentum
tensor has the form [6]

T µ
ν =

∂L

∂(∂µψ)
(∂νψ) + (∂νψ)

∂L

∂(∂µψ)
+ (∂νAρ)

∂L

∂(∂µAρ)
− Lδµ

ν . (13)

Using the Lagrangian (2) and antisymmetric tensor (6) the metric momentum-energy tensor
we shall define as

T̃ µν = Θ̃µν + Fρ
νF µρ +

1

4
gµνF 2 − e

2
ψ(γµAν + γνAµ)ψ + T̃ µν

I , (14)

where

T̃ µν
I = Fρ

νG
(S)µρ
I +

1

4
gµν(FρσG

(S)Iρσ). (15)

One can see from the expression (15) that for the particle in a rest its interaction energy
appearing from polarizability will be have the form [2]

HI = −2π(α0E
2 + β0H

2). (16)

Taking into account (7) the scattering amplitude within second order over photon energy
will give the contribution for electric and magnetic polarizabilities as

T pol
fi =

8πmωω
′

N(t)

[
e
′∗ · eα0 + s

′∗ · sβ0

]
, (17)

where s = n×e; s′∗ = n′×e′∗, e and e′ are the polarization vectors, ω1 and ω2 are the energies
of the incident and scattered photons, n = k/|k|, n

′
= k

′
/|k′ |.

The electric and magnetic polarizabilities have attracted a great number of researches to cal-
culate these quantities from nucleon models. The majority of these calculations apply the con-
cept of internal coordinates of the nucleon which are well defined in a nonrelativistic approach.
In this non relativistic approach second order perturbation theory leads to the expressions [7]

α′ = 2
∑

n 6=0

| < n(i)|Dz|0 > |2
E

(i)
n − E

(i)
0

+ Z2 e2 < r2
E >

3M
, (18)

β′ = 2
∑

n6=0

| < n(i)|Mz|0 > |2
E

(i)
n − E

(i)
0

− e2
∑

i

q2
i

6mi

< 0|ρ2
i |0 > −< 0|D2|0 >

2M
. (19)
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These equations contain the retardation correction 4α = Z2e2 < r2
E > /3M of the electric po-

larizability and the diamagnetic susceptibility βdia = −e2
∑
i

(q2
i /6mi) < 0|ρ2

i |0 > − < 0|D2|0 >

/2M in addition to the leading terms coming from second-order perturbation theory in the
long wave -length limit. In (20) and (21) Z and M are the charge number and total mass,
respectively, of the hadron and r2

E the square of the quadratic charge radius. The quantity D
is the electric dipole moment and Dz and Mz the z-components of the electric and magnetic
dipole moments, respectively. The quantities qi, mi and ρi are the charge fraction, the mass and
the internal coordinate of the constituents inside the hadron. Resently, it has been shown that
these relations contain large uncertainties, especially in the r2

E dependent retardation correction
because there are other relativistic terms of at least the same order.

We would like to say that our electric α0 and magnetic β0 polarizabilities doesn’t depend on
the square of the quadratic charge radius r2

E, i.e.

α0 = 2
∑

n6=0

| < n(i)|Dz|0 > |2
E

(i)
n − E

(i)
0

, (20)

β0 = 2
∑

n6=0

| < n(i)|Mz|0 > |2
E

(i)
n − E

(i)
0

, (21)

so they are the static one.

5. Conclusion

The covariant Lagrangian constructed on the basis of the relativistic electrodynamics of
continuous media formalism and main relativistic quantum field theory principles have let us
to determine metric energy-momentum tensor as well as the equations of motion for spinor
particles with polarizabilities in the electromagnetic field. The contribution of electric and
magnetic polarizabilities to the Compton scattering amplitude have shown that they are the
static one.
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