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Instanton tunneling suppression in kicked
double well potential
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Kicked one-dimensional quantum system with double-well potential is considered.
Monte Carlo simulations of instanton transitions between potential wells demonstrate
exponential instanton tunneling suppression when either perturbation strength or
frequency increase.
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1. Introduction

Semiclassical properties of systems with mixed classical dynamics is a reach rapidly devel-
oping field of research. One of interesting results obtained in this direction is a chaos assisted
tunneling. It was shown that the structure of the classical phase space of Hamiltonian systems
can influence such purely quantum processes as the tunneling [1, 2]. It was demonstrated in
numerical simulations that existence of chaotic motion region in the classical phase space of the
system can increase or decrease tunneling rate by several orders of magnitude [1, 3]. Typically
one considers tunneling between KAM-tori embedded into the ”chaotic sea”. The region of
chaotic motion affects tunneling rate because compared to direct tunneling between tori it is
easier for the system to penetrate primarily into the chaotic region, to travel then along some
classically allowed path and to tunnel finally to another KAM-torus [4, 5].

Chaos assisted tunneling phenomenon as well as the closely related coherent destruction of
tunneling were experimentally observed in a number of real physical systems. The observation
of the chaos assisted tunneling between whispering gallery-type modes of microwave cavity
having the form of the annular billiard was reported in the Ref. [6]. The study of the dynamical
tunneling in the samples of cold cesium atoms placed in an amplitude-modulated standing wave
of light provided evidences for chaos-assisted (three-state) tunneling as well [7]. Recently, the
coherent destruction of tunneling was visualized in the system of two coupled periodically
curved optical waveguides [8].

The most popular methods which are used to investigate the chaos assisted tunneling are
numerical methods based on Floquet theory [9]. Among other approaches to chaos-assisted
tunneling we would like to mention the path integral approach for billiard systems [10] and
quantum mechanical amplitudes in complex configuration space [11]. In this paper we will
consider the original approach based on instanton technique, which was proposed in [12–14]
and numerically tested in [15, 16].

Instanton is a universal term to describe quantum transition between two topologically dis-
tinct vacuum states of quantum system. In classical theory the system can not penetrate
potential or dynamical barier, but in quantum theory such transitions may occur due to tun-
neling effect. It is known that tunneling processes can be described semiclassically using path
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FIG. 1. (a) Phase portrait of the system (1) for ε = 0.3; (b) Phase portrait of the system (1) for
ε = 0.5. Well developed stochastic layer is seen. The perturbations are strong enough to break the
non-perturbed Hamiltonian symmetry x → −x. Parameter f = 1.4 is the same in both cases.

integrals in Euclidean (imaginary) time. In this case instantons are soliton-like solutions of
the Euclidean equations of motion with a finite action. For example, in Euclidean Yang-Mills
theory distinct vacuum states are the states of different Chern-Symons classes, and instanton
solutions emerge due to topologically nontrivial boundary conditions at infinity. In this pa-
per we will use a much simpler system to investigate the connection between the tunneling,
instantons and chaos, namely the kicked system with double well potential.

2. Formulation of the problem and Monte Carlo method used

We consider the kicked double well system with the following Hamiltonian:

H =
ẋ2

2
+

(
x2 − f 2

)2
+ εx

+∞∑
n=−∞

δ(t− nT ). (1)

Here f is the distance between potential wells, ε is the perturbation strength, and T is the
period of kicks. Phase portraits of the system for two different values of ε are shown in Fig. 1.
Quantum mechanical system (1) without kicks (ε = 0) was considered in a huge number of
publications. In this work the paper [17] has to be mentioned, where time independent case
ε = 0 was entirely studied by mean of the Monte Carlo simulations and instanton technique.
Similar methods and approaches are used in this paper in order to address the time dependent
system (1). Numerical simulations of quantum tunneling dynamics of the system (1) are based
on Monte Carlo method, namely, Metropolis algorithm is used. All calculations are performed
in imaginary (Euclidean) time.

Numerical evaluation of the tunneling amplitude and average values of quantum mechanical
observables are achieved via summation over all possible configurations x(τ) weighted with the
exponent of their Euclidean action. The last is evaluated on imaginary time grid with the
spacing between neighbor sites a as

S =
n∑

i=1

[
1

2a
(xi − xi−1)

2 + a
(
x2

i − f 2
)2

+ εxi=[τ/T ]

]
, (2)

where the brackets [. . .] denote the integer part of real number, xi = x(τi) and discrete Euclidean
time grid is given by the expression τi = ia, i = 1, . . . , n. Periodic boundary condition x0 = xn
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FIG. 2. The example of the typical configuration obtained by means of Metropolis algorithm (thin
curve) vs the same configuration after the cooling procedure (thick curve). The Euclidean time grid
step equals 0.05.

is used in numerical simulations. The number of time grid sites is equal to 800 in all numerical
simulations in this paper.

In the framework of Monte Carlo algorithm used the successive configuration {xi}(k+1) is
generated by means of the Metropolis update of the current configuration {xi}(k). It is achieved

via a trial sweep performed for every lattice site x
(k+1)
i = x

(k)
i + δxi. Here δxi is a random

number independently generated for the site labeled i. This trial update is accepted with the
probability:

P
({xi}(k) → {xi}(k+1)

)
= min {exp (∆S), 1}, (3)

where ∆S is the difference between Euclidean actions of the new (trial) and current config-
urations. This mechanism ensures that we accept the updates reducing the action with the
unit probability whereas the updates raising the action are partially rejected (usually with the
probability around 0.5). It guarantees that in long-term outlook we are approaching to the
configurations with the minimal Euclidean action yielding the dominating contribution to the
tunneling amplitude. The sweeps raising the action are not rejected completely, because they
provide ”Boltzmann” distribution exp (−S) in the path integral, i.e. they are responsible for
the taking into account of quantum fluctuations. The example of the typical configuration
obtained by these means is shown in Fig. 2. From this figure it is seen (look at the thin curve)
that a typical path is a superposition of two components, the first one represents rapid short
time scale oscillations with the frequency ∼ ω = 2

√
2f related to quantum fluctuations. The

second one is the series of transitions between the potential minima and it is related to tun-
neling events, i.e. instantons. In order to study these tunneling events in more details the
short scale fluctuations have to be removed. It can be achieved applying well known ”cooling”
technique [17, 18]. In the framework of this method Metropolis updates that lower Euclidean
action are accepted only. It drives configuration to the nearest classical solution and, thus, al-
lows to study the instanton content of the configuration. The thick curve in Fig. 2 is the same
configuration as plotted by the thin curve but after the 10 cooling sweeps application. In order
to extract the instanton content the simple ”sum ansatz” is applied to the cooled configuration:

x(τ) =
∑

i

Qixinst(τ − τi), (4)
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FIG. 3. (a) Logarithmic plot of the number of (anti-)instanton transitions vs. the perturbation
strength, the perturbation frequency ν = 2; (b) logarithmic plot of the number of (anti-)instanton
transitions vs. the perturbation frequency ν = 1/T , the perturbation strength ε = 0.3. The number
of the cooling sweeps equals 10 in both cases.

where Qi = ±1 is the topological charge of the instanton/anti-instanton, xinst(τ − τi) is the
instanton solution placed at τi and the index i labels the instantons and anti-instantons. Thus
the instanton and anti-instanton locations can be extracted as the zero crossings of the cooled
configuration. In the simulations bellow the number of the cooling sweeps is accepted to be
equal to 10, because this value leads to a good agreement between numerical and analytical
results for the non-perturbed system.

3. Results of numerical simulations

In this paper the dependence of the instanton/anti-instanton tunneling transitions number
on the perturbation strength and frequency was numerically studied. The parameter f was
accepted to be equal to 1.4 throughout this study and both the perturbation strength ε and
frequency ν = 1/T have been varying. The results of the numerical simulations are shown in
Fig. 3. Logarithmic plot of the number of (anti-) instanton transitions versus the perturbation
strength is shown in the Fig. 3(a). It is seen that this dependence can be well approximated
by the straight line, standard deviation equals 0.06. Thus the number of (anti-)instanton
transitions exponentially decreases when the perturbation strength rises with the perturbation
frequency being fixed. Logarithmic plot of the number of (anti-)instanton transitions versus
the perturbation frequency ν is shown in the Fig. 3(b). It is seen that this dependence is well
approximated by the straight line as well with the standard deviation 0.03. The perturbation
strength ε is fixed and equal to 0.3. Thus the number of (anti-)instanton transitions exponen-
tially decreases when the perturbation frequency rises with the perturbation strength being
fixed. The number of cooling sweeps is equal to 10 in both cases.

4. Conclusion

The dependence of the number of the instanton/anti-instanton tunneling transitions both
on the perturbation strength and frequency was numerically studied. Monte Carlo technique
was applied for this purpose. Namely, it was demonstrated that the number of (anti-)instanton
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transitions exponentially decreases when either the perturbation strength or the frequency
increase with another parameter being fixed. These results in freezing of the wave packet as a
whole in one of the potential wells. However small magnitude tunneling fluctuations between
wells are not excluded.
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