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On products of arbitrary number
of Mueller matrices

A.A. Bogush∗

Institute of Physics, National Academy of Sciences of Belarus
Nezalezhnasti Avenue, 68, Minsk, 220072, Belarus

The general expressions for the products of arbitrary number of some known simple
Mueller matrices are obtained. It is proposed and used a general approach based on
introduction of special basis in space of the Stokes vector parameters and writing
Mueller matrices in appropriate block form.
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It is known (see [1-3]) that for description of the energetical and polarization characteristics
of the optical radiation the four-dimensional Stokes vector parameters

S̃ = {I, P1, P2, P3}

are used. The parameter I characterizes here the complete intensity of the radiation, P1 -
predominantly horizontal polarization, P2 - predominantly polarization at an angle of 450, P3

- predominantly right-circular polarization.
The optical characteristics of the device (analyzer) which transforms the radiation are usually

described with help of the Mueller matrices connecting the Stokes parameters before and after
the passage of the light through the device.

In the simplest, so called ideal case the Mueller matrix characterizing an analyzer with
horizontal passage axis has the following form [1-3]:

M0 = M(0) =
1

2




1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0


 . (1)

In determining the Stokes parameters and Mueller matrices the space orientation of the
device is to be taken into account and the corresponding transition transformations from an
initial reference frame to another one are to be invoked.

Particularly, in the case when reference frame is rotated through the angle ϑ about the light
propagation direction the rotation matrix is defined in the form [1-3]

R = R(ϑ) =




1 0 0 0
0 C2 S2 0
0 −S2 C2 0
0 0 0 1


 , R−1(ϑ) = R(−ϑ) = R̃(ϑ), (2)

where
C2 = cos 2ϑ, S2 = sin 2ϑ. (3)

∗E-mail: bogush@dragon.bas-net.by

46



On products of arbitrary number of Mueller matrices

The Mueller matrix (1) under acting of the rotation matrix (2) is transformed as follows:

M = M(ϑ) = R(−ϑ)M(0)R(ϑ) =
1

2




1 C2 S2 0
C2 C2

2 C2S2 0
S2 S2C2 S2

2 0
0 0 0 0


 . (4)

In following, it is convenient to pass to the special basis in the space of the Stokes vector
parameters, by introducing the following transformation (permutation) matrix:

P =




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 , P−1 = P̃ .

After transition to the new basis and to the transformed Stokes vector S̃ ′ = P̃S =
{I, P2, P3, P1}, the 44 matrices M(0) (1), R(ϑ) (2) M(ϑ) (4) take the easy-to calculations
block form

M0′ = M ′(0) = P̃M(0)P =
1

2

(
β0 β0

β0 β0

)
, (5)

R′ = R′(ϑ) = P̃R(ϑ)P =

(
I2 0
0 O(ϑ)

)
, R−1(ϑ) =

(
I2 0

0 Õ(ϑ)

)
, (6)

M ′ = M ′(ϑ) = P̃M(ϑ)P =
1

2

(
β0 β

β̃ β̃β

)
. (7)

Here the following notations for the related block 22-matrices are introduced (see (3)):

O = O(ϑ) =

(
C2 S2

−S2 C2

)
, O−1 = O(−ϑ) = Õ(ϑ) =

(
C2 −S2

S2 C2

)
; (8)

β0 =

(
1 0
0 0

)
, β = Oβ0 =

(
C2 S2

0 0

)
, β̃ = β0Õ =

(
C2 0
S2 0

)
. (9)

Now let us consider the problem of construction of the resulting Mueller matrix M which
corresponds to the action of a series (product) of arbitrary number n of different matrice Mi

M = MnMn−1 ... Mi ... M2M1,

taken in the form (7)

Mi = M(ϑi) =
1

2

(
β0 βi

β̃i β̃iβi

)
, βi =

(
C

(i)
2 S

(i)
2

0 0

)
, β̃i =

(
C

(i)
2 0

S
(i)
2 0

)
. (10)

In the simplest case of the product of two such Mueller matrices M2 = M(ϑ2) M1 = M(ϑ1)
(10) after elementary calculations we will have

M2M1 = M(ϑ2)M(ϑ1) =
1

2

(
β0 β2

β̃2 β̃2β2

)
1

2

(
β0 β1

β̃1 β̃1β1

)
=

=
1

4

(
β0 + β2β̃1 β1 + β2β̃1β1

β̃2 + β̃2β2β̃1 β̃2β1 + β̃2β2β̃1β1

)
= C2

(ϑ2−ϑ1)

1

2

(
β0 β1

β̃2 β̃2β1

)
, (11)
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where is taken into account that (see (3), (9))

(β0)2 = β0, β0β1 = β1, β̃2β
0 = β̃2, β2β̃1 = C2(ϑ2−ϑ1)β

0,

(12)
(1 + β2β̃1)β

0 = (1 + C ′′
2 C ′

2 + S ′′2S ′2)β
0 = (1 + C2(ϑ2−ϑ1))β

0 = 2C2
(ϑ2−ϑ1)β

0;

C ′′
2 = cos(2ϑ2), S ′′2 = sin(2ϑ2), C ′

2 = cos(2ϑ1), S ′2 = sin(2ϑ1),
(13)

C2(ϑ2−ϑ1) = cos[2(ϑ2 − ϑ1)], C(ϑ2−ϑ1) = cos(ϑ2 − ϑ1).

In similar manner we can also find the product of three matrices

M3M2M1 = M(ϑ3)M(ϑ2)M(ϑ1) = C2
(ϑ3−ϑ2)C

2
(ϑ2−ϑ1)

1

2

(
β0 β1

β̃3 β̃3β1

)
. (14)

It immediately follows the general expression for the product of n Mueller matrices Mi =
Mi(ϑi) (10):

M = MnMn−1 ... Mi ... M2M1 = M(ϑn)M(ϑn−1) ... M(ϑi) ... M(ϑ2)M(ϑ1) =

= C2
(ϑn−ϑn−1)C

2
(ϑn−1−ϑn−2) ... C2

(ϑi−ϑi−1) ... C2
(ϑ2−ϑ1)

1

2

(
β0 β1

β̃n β̃nβ1

)
. (15)

Since the Mueller matrices under consideration M(0) (5), as well as M(ϑ) (10) are idempo-
tent M2(0) = M(0), M2(ϑ) = M(ϑ), the action of the product of n such identical matrices is
equivalent to the action of the one matrix alone. —

Now let us pass to the consideration of the non-ideal situation, particularly to the case of
the known Mueller matrix

M0 = τ̄




1 0 q 0

0
√

1− q2 0 0
q 0 1 0

0 0 0
√

1− q2


 = τ̃

(
α β0q
β0q α

)
, (17)

which characterizes an analyzer with polarizing capacity qi and average passage coefficient τ̄i.
The block 2x2-matrices in (17) are defined as (see (3),(10))

(
1 0

0
√

1− q2

)
=

(
1 0
0 g

)
= α, g =

√
1− q2,

(
q 0
0 0

)
= β0q, (18)

where
αβ0 = β0α = β0. (19)

As above, let us to consider a problem of construction of of general expressions for products

M0 = M0
nM0

n−1 ... M0
i ... M0

2 M0
1 = M0

n,n−1,...,i,...,2,1,

of the arbitrary number n of the Mueller matrices M0
i taken in the form (see (17),(18),(19))

M0
i = τ̄i

(
αi β0qi

β0qi αi

)
, αi =

(
1 0
0 gi

)
, gi =

√
1− q2

i . (20)

First of all, we find the explicit expressions for the products of two and three matrices M0
i

(20)

M0
2,1 = M0

2 M0
1 = τ̄2τ̄1

(
α2α1 + β0M(q2, q1) β0N(q2, q1)

β0N(q2, q1) α2α1 + β0M(q2, q1)

)
, (21)
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M(q2, q1) = q2q1 =

C1
2=1∑
i>j

qiqj, N(q2, q1) = q2 + q1 =

C1
2=2∑
i

qi;

M0
3,2,1 = M0

3 M0
2 M0

1 = τ̄3τ̄2τ̄1

(
α3α2α1 + β0M(q3, q2, q1) β0N(q3, q2, q1)

β0N(q3, q2, q1) α3α2α1 + β0M(q3, q2, q1)

)
, (22)

M(q3, q2, q1) =

C2
3=3∑
i>j

qiqj, N(q3, q2, q1) =

C1
3=3∑
i

qi +

C3
3=1∑

i>j>k

qiqjqk.

Hence, it is easy to conclude that the general expression for the product of arbitrary number
n of the different Mueller matrices N0

i (20) may be written in the following compact form

M0
n,n−1,...,i,...,2,1 = M0

nM0
n−1 ... M0

i ... M0
2 M0

1 =

= τ̄nτ̄n−1...τ̄i...τ̄2τ̄1

(
An,n−1,...,i,...,2,1 Bn,n−1,...,i,...,2,1

Bn,n−1,...,i,...,2,1 An,n−1,...,i,...,2,1

)
, (23)

An,n−1,...,i,...,2,1 = αnαn−1...αi...α2α1 + β0M(qn, qn−1, ..., qi, ..., q2q1),

M(qn, qn−1, ..., qi, ..., q2, q1) =

C2
n∑

i>j

qiqj +

C4
n∑

i>j>k>l

qiqjqkql + ...,

Bn,n−1,...,i,...,2,1 = β0N(qn, qn−1, ..., qi, ..., q2q1),

N(qn, qn−1, ..., qi, ..., q2q1) =

C1
n∑
i

qi +

C3
n∑

i>j>k

qiqjqk + ....

By putting
τ̄i = τ̄ , qi = q, αi = α, (24)

i.e. by passing to the case of identical Mueller matrices M0
i (qi) = M0(q) (20) we obtain more

simple expressions for products of 2, 3 and n matrices under consideration:

(M0)2 = (τ̄)2

(
α2 + β0q2 β0(2q)

β0(2q) α2 + β0q2

)
, (25)

(M0)3 = (τ̄)3

(
α3 + β0(3q2) β0(3q + q3)
β0(3q + q3) α3 + β0(3q2)

)
(26)

(M0)n = (τ̄)n

(
αn + β0(C2

nq2 + C4
nq4 + ...) β0(C1

nq + C3
nq3 + ...)

β0(C1
nq + C3

nq3 + ...) αn + β0(C2
nq2 + C4

nq4 + ...)

)
. (27)

The situation turns out to be more complicate in the case when the initial Mueller matrices
M0

i = Mi(0) (20) are transformed with help of the rotation matrices Ri = R(ϑi) (6) and, as a
result, take the form:

Mi = Mi(ϑi) = R−1(ϑi)Mi(0)R(ϑi) =

= τ̄

(
I2 0

0 Õ(ϑi)

) (
αi β0qi

β0qi αi

) (
I2 0
0 O(ϑi)

)
= τ̃

(
αi βiqi

β̃iqi γi

)
, (28)

where the additional notations are introduced (see (3), (9), (18), (19))

γi = ÕαiO =

(
C

(i)2
2 C

(i)
2 S

(i)
2

C
(i)
2 S

(i)
2 S

(i)2
2

)
+

(
S

(i)2
2 −S

(i)
2 C

(i)
2

−C
(i)
2 S

(i)
2 C

(i)2
2

,

)
gi = β̃iβi + δ̃iδigi,

(29)
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δi =

(
−S

(i)
2 C

(i)
2

0 0

)
, δ̃I =

(
−S

(i)
2 0

C
(i)
2 0

)
.

For simplicity, we shall restrict our consideration to the case when the all initial different
Mueller matrices M0

i = Mi(0) (28) are transformed with help of the one and the same rotation
matrix R(ϑ) (6).

As a result, for the product of n transformed different Mueller matrices(28)(see(29))

Mi = Mi(ϑ) = R(−ϑ)M0
i R(ϑ) = τ̃l

(
αl βqi

β̃qi γi

)
, γi = β̃β + δ̃δgi, (30)

we can, by taking into account that, by definition, R−1R = R(−ϑ)R(ϑ) = R(ϑ)R(−ϑ) =
RR−1 = I, write

Mn(ϑ)Mn−1(ϑ) ... Mi(ϑ) ... M2(ϑ)M1(ϑ) =

= R(−ϑ)(M0
nM0

n−1...M
0
i ...M0

2 M0
1 )R(ϑ), (31)

where the expression under transformation, M0
nM0

n−1...M
0
i ...M0

2 M0
1 , is defined by the above

obtained general formula (23).
After corresponding calculations for the products of 2,3 and n Mueller matrices (30) we find

M2M1 = M2(ϑ)M1(ϑ) = R(−ϑ)M0
2 M0

1 R(ϑ) =

= R(−ϑ)

{
τ̄2τ̄1

(
α2α1 + β0q2q1 β0(q2 + q1)

β0(q2 + q1) α2α1 + β0q2q1

)}
R(ϑ) = (32)

= τ̄2τ̄1

(
α2α1 + β0q2q1 β(q2 + q1)

β̃(q2 + q1) β̃β(1 + q2q1) + δ̃δg2g1

)
,

M3M2M1 = M3(ϑ)M2(ϑ)M1(ϑ) = R(−ϑ)M0
3 M0

2 M0
1 R(ϑ) =

= τ̄3τ̄2τ̄1

(
α3α2α1 + β0M(q3q2q1) βN(q3, q2, q1)

β̃N(q3, q2, q1) β̃β[1 + M(q3, q2, q1)] + δ̃δg3g2g1

)
, (33)

M(q3, q2, q1) = q3q2 + q3q1 + q2q1, N(q3, q2, q1) = q3 + q2 + q1 + q3q2q1.

Mn(ϑ)Mn−1(ϑ) ... Mi(ϑ) ... M2(ϑ)M1(ϑ) =

= τ̄nτ̄(n−1)...τ̄i...τ̄2τ̄1

(
An,n−1,...,i,...,2,1 B′

n,n−1,...,i,...,2,1

B̃′
n,n−1,...,i,...,2,1 A′

n,n−1,...,i,...,2,1

)
,

B′
n,n−1,...,i,...,2,1 = βN(qn, qn−1, ..., qi, ..., q2, q1), (34)

B̃′
n,n−1,...,i,...,2,1 = β̃N(qn, qn−1, ..., qi, ..., q2, q1),

A′
n,n−1,...,i,...,2,1 = Õ(ϑ)An,n−1,...,i,...,2,1O(ϑ) =

= β̃β[1 + M(qn, qn−1, ..., qi, ..., q2, q1)]+

+δ̃δgngn−1...gi...g2g1.

In more simple case of products of identical Mueller matrices(30), transformed with help of
the one and the same rotation matrix R(ϑ) (6), in correspondence with (32), (33), (34) and
(25), (26), (27), we can immediately write

[M(ϑ)]2 = (τ̄)2

(
α2 + β0q2 β(2q)

β̃(2q) β̃β(1 + q2) + δ̃δg2

)
, (35)
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[M(ϑ)]3 = (τ̄)3

(
α3 + β0(3q2) β(3q + q3)

β̃(3q + q3) β̃β(1 + 3q2) + δ̃δg3

)
, (36)

[M(ϑ)]n = (τ̄)n

(
αn + β0(C2

nq2 + C4
nq4 + ...) β(C1

nq + C3
nq3 + ...)

β̃(C1
nq + C3

nq3 + ...) β̃β(1 + C2
nq

2 + C4
nq

4 + ...) + δ̃δgn

)
. (37)

Finally, let us consider a limiting case when polarizing capacity of the device qi is very small

and we can put gi =
√

1− q2
i → 1.

Then the Mueller matrix (30) in this approximation takes the form (αi → I2, γi → I2)

Mi = M(qi, ϑi) = τ̄l

(
I2 βiqi

β̃iqi I2

)
, (38)

and for the product of arbitrary number of different matrices (40) transformed with help of
different rotation matrices (6) in the first order approximation with respect to the small pa-
rameters qi we can obtain the following simple expression:

Mn(ϑn)Mn−1(ϑn − 1) ... Mi(ϑi) ... M2(ϑ2)M1(ϑ1) =

= τ̄nτ̄n−1...τ̄i...τ̄2τ̄1

(
I2

∑n
i βiqi∑n

i β̃iqi I2

)
. (39)

Here, naturally, the all products of small parameters qi are neglected.
Particularly, in the case when the all Mueller matrices (38) in the product (39) are obtained

with help of the one and the same rotation matrix (6) (see (24)) we will have

Mn(ϑ)Mn−1(ϑ) ... Mi(ϑ) ... M2(ϑ)M1(ϑ) =

= τ̄nτ̄n−1...τ̄i...τ̄2τ̄1

(
I2 β

∑n
i qi

β̃
∑n

i qi I2

)
. (40)

Thus, the action of the product (40) of n Mueller matrices (38) taken in the approximation
under consideration turns out to be equivalent (up to products of the passage coefficients τ̄i)
to the action of the one separate matrix (38) alone with polarizing capacity equal to the

∑n
i qi

i.e, to the sum of capacities qi of the all Mueller matrices in (40).
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