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By using the intertwining operator technique we show how to construct the quan-
tum well potential with a desired spectrum for the Schrödinger equation with a
position-dependent effective mass. The first- and second-order Darboux transforma-
tions, supersymmetry, chain of transformations are considered for the Schrödinger
equation with a nonconstant mass. An interrelation is established between the dif-
ferential and integral transformation operators. The method allows one to generate
potentials with additional and with removal bound states in comparison with the
spectrum of an initial potential as well as to construct phase-equivalent potentials.
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1. Introduction

In the last few years the rapid progress has been achieved in nanoelectronics. This became
possible, due to the development of technologies and techniques, such as Molecular Beam Epi-
taxy (MBE) for instance, which enables to deposit thin layers of different materials one on top
of the other, with almost atomic precision. The last one, in its turn, is able to produce a vari-
ety of low-dimensional structures, ranging from a heterojunction formed at a single interface,
through quantum wells (QW) to superlattices. It would not be an overstatement to say that a
new paradigm of electronics emerged, for which even the name has been already coined, Quan-
tum Technology or Quantum Engineering. It seems, however, that quantum engineering in its
present stage, in spite of all its successes and maturity, is still passive in the sense that it makes
use of, figuratively speaking, less ’degrees of freedom’ than it possibly could. It means that
the ’palette’ of QW-potential shapes is still limited to a few most popular ones: rectangular,
parabolic or semi-parabolic and this circumstance obviously restricts the possibility to choose
and control the energy spectrum of QW produced by means of MBE. Meantime, in different
areas of possible applications of the low-dimensional structures mentioned above, there is often
need a specific kind of spectrum known beforehand. The problem is: how to produce the QW
with a predetermined spectrum? An affirmative answer to the question would make quantum
engineering more flexible and active, providing the opportunity to develop multitude of novel
quantum devices.

The aim of this paper is to develop an approach to the QW-potential reconstruction on
the base of the intertwining operator technique for generalized Schrödinger equation with the
position-dependent effective mass. As is known, the method of intertwining relations is equiv-
alent to the Darboux transformations and is closely related to the supersymmetry method in
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quantum mechanics. Some investigations should be noted in this direction. Among them are
Darboux transformations in the (λ2, E) plane [11]-[13], supersymmetry and phase-equivalent
potentials for equations with linear energy-dependent potentials [14]. However, no successional
study of the potential reconstruction problem for the Schrödinger equation with a nonconstant
mass has not been made yet. In particular, the interrelations between the differential and inte-
gral transformation operators have not been established, the chain of Darboux transformations
have not been constructed. In this work we try to fill in the gaps in this field.

2. Reconstruction of quantum well potentials using intertwining
operator technique

2.1. Reconstruction of QW potentials in part of the spectrum

Suppose that one-dimensional potential V (x) can be represented by the function
VN(x,m∗, E0) which obeys the following conditions:
(i) VN supports precisely N bounded states of the quantum system with the effective mass m∗.
The bound-state energies coincide with the energies ε1, ε2, ...εN of the levels within the QW ;
(ii) limx→∞ VN = E0. The last value can be considered as the depth of QW .

Arranging the binding energies k2 = E0− εn in descending order so that k1 > k2 > ... > kN ,
and ε1 = E0−k2

1 refers to the ground-state energy, one can use for QW potential reconstruction
the technique developed by Schonefeld et al [8] for studying the convergence of the reflectionless
approximation to the confining potentials. Omitting the intermediate calculations, we give here
only the final results:

VN(x,E0) = E0 − 2
d2

dx2
ln D(x), (1)

where
D(x) =

∑
S

exp(−2x
∑
p∈S

kp)
∏

(S, S̃)

∏
(S, S̃) =

∏

m∈S,n∈S̃

km + kn

km − kn

.

Here the sum ranges over all subsets S of {1, 2, ..., N} including the null set and the full set,
while S̃ denotes the complement of the set S.

We shall consider a generalized Schrödinger equation, that is with the potential VN(x,E0)
and the position-dependent effective mass. Obviously, the new spectrum obtained in this way
might differ from that which was used in ISP-method in order to reconstruct the potential
VN(x,E0), but we can suppose that the changes of a spectrum are not dramatic, because in
practice the space variable dependence of the effective mass is weak. Further on we shall show

that it is possible to amend this potential and obtain ”improved” one Ṽ (x), in order to have
the spectrum needed.

2.2. First-order Darboux transformation and supersymmetry

Now we consider a generalized Schrödinger equation with the the position-dependent effective
mass m∗(x)

− 1

m∗(x)

d2φ

dx2
+ V (x)φ(x) = Eφ(x). (2)

The problem of the space-variable dependent effective mass attracts now persistent attention
because it is not obvious whether the effective mass approximation is applicable to heterostruc-
tures, or not (see [9,10] and the Refs. therein). Before we start our discussion, let us make
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some general remarks. Remember, the QW of the shape other than rectangular, is produced by
stacking up a number (some times even a considerable number) of layers of different materials,
each of which is characterized by its own effective mass. This stack of layers can be considered
as some special case of heterostructure. Then if one tries to solve the Sturm-Liouville problem
for a corresponding Schrödinger equation (we refer to this problem also as a direct one), treat-
ing the heterostructure as a whole and applying the effective-mass theory, one encounters some
difficulties, whose nature is the following. First, the total electron wave function is a product of
the slowly varying envelope function and the Bloch function of the local extremum in the host’s
band structure. The Bloch functions in the two materials on either side of a heterojunction
must be similar for the effective-mass approximation to be valid. An obvious condition is that
they must belong to the same point in Brillouin zone, and this can fail for some materials.
The second point concerns the matching of the envelope functions at the interface. Consider a
junction at x = 0 between two regions of materials, say A and B. The Schrödinger equations for
the envelope function in the two subsequent regions (we consider only one-dimensional model),
are

(
− 1

m∗
A

d2

dx2
+ EA

c

)
φ(x) = Eχ(x)),

(
− 1

m∗
B

d2

dx2
+ EB

c

)
φ(x) = Eχ(x)),

where m∗
A and m∗

B are the electron effective masses for the materials A and B, respectively,
~2/2 = 1 and the difference in the bottoms of the conduction bands is ∆Ec = EB

c −EA
c . If the

materials were the same, one can match the value and the derivative of the wave function at
the interface by means of usual conditions

φA(0−) = φB(0+),
dφA(x)

dx
|x=0− =

dφB(x)

dx
|x=0+ ,

where 0− means the side of the interface in material A and so on. This simple condition is not
correct for the heterostructure where the two effective masses are different, because it does not
conserve current. A correct set of matching conditions is

φA(0−) = φB(0+),
1

m∗
A

dφA(x)

dx
|x=0− =

1

m∗
B

dφB(x)

dx
|x=0+ .

The condition for matching the derivative now includes the effective mass. A more mathematical
argument is that the matching condition which does not include effective masses assumes that
the Schrödinger equation takes the form (2). In this section however, we apply the intertwining
relation technique to construct a chain of exactly solvable Hamiltonians whose kinetic energy
operators are not Hermitian, if m∗(x) is space dependent.

Let us start with the equation:

Hφ(x) = Eφ(x), H = − 1

m∗(x)

d2

dx2
+ V (x), (3)

where V (x) is supposed to be equal to VN(x,E0). This equation is reduced to the generalized
Schrödinger equation of the form:

H0φ0(x) = Em∗(x)φ0(x), H0 = −d2/dx2 + v(x),

where v(x) = V (x)m∗(x). In fact, it is the Schrödinger equation with linearly energy-dependent
potentials. The Darboux transformations for the Schrödinger equations with variable values of
energy and angular momentum were suggested in [11] and in a more general form in [12]. Then
in Refs. [13,14] algebraic transformations have been elaborated for a Sturm-Liouville problem
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for studying phase-equivalent linearly energy-dependent potentials and for constructing exactly
solvable three-body models with two-central potentials. On the other hand, the intertwining
operator method provides the universal approach to creating new exactly solvable models and
can be applied to the operators of a very general form ( see for example [15-17]). In this paper,
we apply the intertwining operator technique to the equation (3) with a position-dependent
mass in order to construct the potential which supports the desirable spectrum.

Suppose that the solution of the eigenvalue problem to the equation (3) with the given
potential V (x) and position dependent m∗(x) are known and we would like to solve a similar

problem for another Hamiltonian H̃ containing a new potential Ṽ (x) and the spectrum which
probably differs from the spectrum of the Hamiltonian (3) by a single quantum state:

H̃φ̃(x) = E φ̃(x), H̃ = − 1

m∗(x)

d2

dx2
+ Ṽ (x). (4)

We start with standard intertwining relations

LH = H̃L, (5)

φ̃(x) = Lφ(x), (6)

where the operator L intertwines the Hamiltonians H and H̃. We search for the intertwining
operator L in a general form

L = B(x)d/dx + A(x), (7)

where A(x) and B(x) are to be determined. Once the operator L is known, the solutions φ̃ can
be obtained from ((6) by applying L to the known solutions φ. To find the explicit form of L,
we use the equations (3),(4) and the intertwining relations ((5),((6):

[
− 1

m∗(x)

d2

dx2
+ Ṽ (x)

]
Lφ(x) = L

[
− 1

m∗(x)

d2

dx2
+ V (x)

]
φ(x).

After some algebra we arrive at:

− 1

m∗ (A
′′
φ + 2A

′
φ
′
+ Aφ

′′
)− 1

m∗ (B
′′
φ
′
+ 2B

′
φ
′′

+ Bφ
′′′
)

+Ṽ (Aφ + Bφ
′
) = A

(
− 1

m∗φ
′′

+ V φ
)

+

+B
(
− 1

m∗φ
′′′ −B

( 1

m∗

)′
φ
′′

+ V
′
φ + V φ

′
)

and finally, to the next system of equations:

1

m∗A + 2
1

m∗B
′
= B

( 1

m∗

)′
+ A

1

m∗ , (8)

1

m∗2A
′
+

1

m∗B
′′ − Ṽ B = −BV, (9)

− 1

m∗A
′′

+ Ṽ A = AV + BV
′
. (10)

From (8) it immediately follows that

2B
′
/B = −m∗′/m∗, B = C/

√
m∗, (11)

where C is an arbitrary constant. From (9), (10) one gets

Ṽ = V +
1

m∗
B
′′

B
+

1

m∗
2A

′

B
(12)

231



A.A. Suzko, I. Tralle

and

− 1

m∗A
′′ + (

1

m∗2A
′
+ B

′′
)B−1A = BV

′
.

In order to integrate the last equation, let us introduce a new auxiliary function K(x) defined
as A(x) = B(x)K(x). Then we arrive at a nonlinear differential equation

(
−K

′′
+ 2K

′
K − V

′
m∗

)
+

2B
′

B

(
K2 −K

′
)

= 0.

Taking into account the relation V = v/m∗ and the first of the relations (11), the last equation
can be easily transformed into another one, in a single unknown K only:

(
−K

′′
+ 2K

′
K − v

′
)
− m∗′

m∗

(
−K

′
+ K2 − v

)
= 0.

This one can be rewritten as

d

dx

(
1

m∗

(
−K

′
+ K2 − v

))
= 0,

which means that
(1/m∗)

(
−K

′
+ K2 − v

)
= µ,

where µ is an integration constant. The last equation is analogous to Riccati equation. In-
troducing a new function U(x) as K = −U ′U−1 and changing µ = −λ, one arrives at the
equation

−(1/m∗(x))U ′′
(x) + V (x)U(x) = λU(x). (13)

Here U(x) is supposed to be invertible at all x. The last equation then is nothing else but
the initial equation (3) which is supposed to be solved and E = λ is a point of spectrum
of H. Therefore, we assume that the solutions of (13) are known for the given values of λ.
Having found the explicit form of B (see (11)), using the formula for K mentioned above,

from the relation A = BK one gets A(x) = −C (lnU(x))
′ √

1/m∗(x). Once U is known, the

transformation operator L, the new potential Ṽ (x) and the corresponding solutions of the
transformed equation (4) are defined up to an arbitrary constant C. Without loss of generality,
we can put it safely equal to unity. After this we have

B(x) =
1√

m∗(x)
, A(x) =

K(x)√
m∗(x)

, K = − (lnU(x))
′
. (14)

To make further transformations, let us calculate B′′/B =
√

m∗(1/
√

m∗)′′. Using this and (14)

in (7), (12) and (6) we construct the intertwining operator L, the transformed potential Ṽ (x)

and the solutions φ̃ in the form:

L =
1√
m∗

(
d

dx
+ K

)
=

1√
m∗

(
d

dx
− (lnU)′

)
, (15)

Ṽ = V +
1√
m∗

[
d2

dx2

1√
m∗ + 2

d

dx

(
1√
m∗K

)]
(16)

= V +
1√
m∗

[
d2

dx2

1√
m∗ − 2

d

dx

(
1√
m∗ (lnU)′

)]
,

φ̃ = Lφ =
1√
m∗

[
d

dx
− (ln U)

′
]

φ. (17)
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It follows immediately from (17) that LU = 0. In order to obtain the solution of the equation
(4) at the energy of transformation λ, we shall use the second linear independent solution to

(3), namely Û(x) = U(x)
∫ x

dx′|U(x′)|−2 where the integration limits depend on the boundary
conditions. In particular, for regular solutions satisfying the boundary conditions φ(x = 0) =
0, φ′(x)|x=0 = 1, the lower integration limit is 0 and the upper one is x, while for the Jost
solutions the integration limits are −∞ and x, respectively. As a result we get

η(x) = LÛ(x) =
1√

m∗(x)

1

U(x)
. (18)

Once η is found, one can get a second solution of (4) at the energy of transformation λ. By
using the Liouville’s formula once more, one gets

η̂(x) = η(x)

∫ x

dx′|η2|−1 (19)

=
1√

m∗(x)U(x)

∫ x

dx′U(x′)m∗(x′)U(x′).

Hence, the information about all solutions of the initial equations (3) provides the knowledge
of all solutions of the transformed equations (4). As in the case of Schrödinger equation, the

functions φ(x, E) and φ̃(x, E) correspond to Hamiltonians H and H̃, respectively, are related
through the transformation operator L (see (17)). The difference is that in our case L includes

the position-dependent mass. As a consequence, the new potential Ṽ and solutions φ̃ depend
on the effective mass m∗(x). The function η(x) defined by (18) at the energy of transformation
E = λ cannot be normalized and this is the reason why λ does not belong to the discrete

spectrum of H̃. Therefore, Hamiltonians H and H̃ are isospectral with one exception of the
bound state with the energy E = λ, which is removed from the initial spectrum of H. Note
that if the transformation function U(x) corresponds to the ground state, i.e., U(x) is nodeless,

then the transformed potential Ṽ (x) has no any new singularity, exept the singularities due to
V (x) (of course, we asumme m∗(x) 6= 0 at all x). However, if we apply this transformation to

an arbitrary state other than ground state, the transformed potential Ṽ (x) might contain extra
singularities, which are not present in the initial potential V (x) and hence, the Hamiltonian

H̃ becomes physically meaningless. As we shall see later, the difficulties with singularities
can be circumvented by means of second-order Darboux transformations. Now we show how
one can construct a Hamiltonian with an additional bounded state with respect to the initial
Hamiltonian by using factorization of Hamiltonians and supersymmetry.

2.3. Supersymmetry

The supersymmetry is based on factorization properties of Darboux transformation operators
L and L+. The definition of formally conjugate operators is D† = (CQ)† = Q†C† and ( d

dx
)† =

− d
dx

. In our case, the scalar product of functions is defined by not the standard way (f, g)
but with the weight of m∗(x): (f, g)m =

∫
m∗(x)f(x)g(x). In this case instead of operator

D† it is necessary to consider the operator m∗−1D†m∗. Therefore the operator L† adjoint to
L = 1√

m∗ (
d
dx

+ K) is determined as

L† =
1√
m∗

(
− d

dx
− m∗′

2m∗ + K

)
. (20)
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Now let us consider the superposition L†L and LL†:

L†L = − 1

m∗
d2

dx2
+

1

m∗ (−K ′ + K2), (21)

LL† = − 1

m∗
d2

dx2
+

1

m∗ (K
′ + K2) (22)

−1

2

m∗′′

m∗2 +
3

4

m∗′m∗′

m∗3 − m∗′

m∗2K.

Express the potential V from equation (13) in the form V = U ′′/(m∗U) + λ. Using K ′ =
−[U ′/U ]′ = −U ′′/U + (U ′/U)2 we represent V as

V =
1

m∗ (−K ′ + K2) + λ . (23)

Substitution of (23) into (16) leads to the following representation of the transformed potential:

Ṽ =
1

m∗ (K
′ + K2) +

1√
m∗

d2

dx2

1√
m∗ −

m∗′

m∗2K + λ . (24)

Using (23) and (24), after some transformations the formulae (21 and (22) can be rewritten as

L†L = − 1

m∗
d2

dx2
+ V − λ = H− λ; (25)

LL† = − 1

m∗
d2

dx2
+ Ṽ − λ = H̃ − λ. (26)

From (26) one can obtain the intertwining relation

HL† = L†H̃ , (27)

which means that the operator L† is also the transformation operator and realizes the trans-

formation of the solutions of equation (4) to solutions of (3), φ ∝ L†φ̃. As one can see from the
comparison of the relations (15) and (20), the operator L† is not an inverse of L. One can show
that the operators L and L† can be expressed in terms of η, which are solutions of transformed

equations (4) at the energy λ with the potential Ṽ determined by (16). For this aim let us
express K in terms of η, by means of (18).

K = −U
′

U =
m∗′

2m∗ +
η′

η
.

Using this in (15) and (20), we obtain

L =
1√
m∗

(
d

dx
+

m∗′

2m∗ +
η′

η

)
, L† =

1√
m∗

(
− d

dx
+

η′

η

)
(28)

Evidently, the function η is also a transformation function. It is clear that L†η = 0, i.e.,
η belongs to the kernel of the operator L†. As one can see from (28) and (19), the ap-
plication of the operator L† to the second linearly independent solution η̂ to equation (4)
gives back the solutions U of the initial problem at the energy of transformation. Indeed,

L†η̂ = 1√
m∗

(
− d

dx
+ η′

η

)
η(x)

∫ x
dx′|η2|−1 = U . Hence, a one-to-one correspondence between the

spaces of solutions of equations (3) and (4) is established, and these are the operators L and
L†, which produce the correspondence.

Note, one can interchange the role of the initial and final equations. The function η becomes
transformation function for the intertwining operator L†, which will make the transformation

in the opposite direction: from the potential Ṽ to the potential V and from the solutions of (4)
to the solutions of (3). So, if within the first procedure (15)–(17) we constructed the potential

Ṽ with one bounded state removed , now we can construct the potential V with an addional
bounded state.
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2.4. Second-order and the chain of Darboux transformations

Let us define the second-order Darboux transformation as a sequence of two Darboux trans-
formations performed in a row

L = L2L1, (29)

where L1 is actually L defined in (14)

L1 =
1√
m∗

(
d

dx
+ K1

)
, K1 = −U

′
1

U 1
, (30)

whereas L2 is determined as follows:

L2 =
1√
m∗

(
d

dx
+ K2

)
, K2 = −χ′1

χ 1

, (31)

and χ1 ≡ χ1(x, λ2) is obtained by means of the first-order transformation, applied to the
solution U2 of the equation (13) or (3) with the eigenvalue λ2

χ1 = L1U2 =
1√
m∗

(
d

dx
− U ′1
U 1

)
U2. (32)

It is clear that χ1 is the solution of equation (13) with the potential V1 = V + 2K ′
1, defined

as in (16), and χ1 can be taken as a new transformation function for the Hamiltonian H1 to
generate a new potential

V2 = V1 +
1√

m∗(x)

[
d2

dx2

1√
m∗(x)

+ 2
d

dx

(
1√

m∗(x)
K2

)]
(33)

and corresponding solutions

φ2 = L2φ1 =
1√
m∗

(
d

dx
+ K2

)
φ1, φ1 = L1φ. (34)

Here the function φ1, denoted earlier as φ̃, is an eigenfunction of the Hamiltonian H1

φ1 =
1√
m∗

[
d

dx
− (ln U)

′
1

]
φ. (35)

In other words, the action of the second-order operator (29) on the solutions φ leads to the
solutions of H2

φ2 = Lφ = L2L1φ. (36)

Iterating this procedure m times in regard to given operator H, one arrives at the operator
Hm, which satisfies the intertwining relation

LH = HmL.

In this way one gets

Vm = Vm−1 +
1√
m∗

[
d2

dx2

1√
m∗ + 2

d

dx

(
1√
m∗Km−1

)]
, (37)

φm = Lφ = Lmφm−1 = LmLm−1...L1φ, (38)
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where L is the m-th order differential operator:

L = LmLm−1...L1, Lm =
1√
m∗

(
d

dx
+ Km

)
(39)

and Km = −χ′m−1χ
−1
m−1.

It should be noted, that the chain of m first-order Darboux transformations results in a chain
of exactly solvable Hamiltonians H → H1 → ... → Hm.

Consider now the 2-nd order transformation in detail. Using the explicit expression for V1

which appears in the first-order Darboux transformation, we get a formula for the potential V2:

V2 = V +
2√
m∗

(
d2

dx2

1√
m∗

)
+

2√
m∗

d

dx

(
1√
m∗K

)
, (40)

where K = K1 + K2. Let us represent χ1 as

χ1(x) =
1√

m∗(x)

W1,2(x)

U1(x)
, (41)

where W1,2(x) = U1(x)U ′2(x) − U ′1(x)U2(x) is the Wronskian of the functions U1(x) and U2(x).
Plugging (41) into the formula (31) for K2, after some transformations we obtain

K2(x) = − d

dx

[
ln

W1,2(x)√
m∗(x)U1(x)

]
. (42)

After this K = K1 + K2 can be represented as

K = −U
′
1

U1

+
m∗′

2m∗ +
U ′1
U1

− W ′
1,2

W1,2

=
m∗′

2m∗ −
W ′

1,2

W1,2

.

With this taking into account, making in (40) the next substitution:

d2

dx2

1

m∗1/2
= −1

2

d

dx

m∗′

m∗3/2
,

after some manipulations the new potential can be expressed as:

V2(x) = V (x)− 2√
m∗

d

dx

[
1√
m∗

d

dx
ln W1,2(x)

]
. (43)

By using (34) find now the corresponding functions φ2(x). By analogy with χ1 the function
φ1(x) can be written in terms of the Wronskian W1,E(x) = U1(x)φ′(E , x)− U ′1(x)φ(E , x):

φ1(x) =
1√

m∗(x)

W1,E(x)

U1(x)
. (44)

Let us now calculate the derivative of φ1 = L1φ, that is

(L1φ)′ =
1√

m∗U ′1
+

1√
m∗φ

′′ − 1√
m∗

U ′′1
U1

φ.

Making use of the last expression and the relation (42) for K2, we obtain, after some simplifi-
cation, the formula

φ2(x) =
1

m∗(x)

(
φ′′(x)− U ′′1 (x)φ(x)

U1(x)

)

− d

dx

(
ln W1,2(x)

) W1,E(x)

m∗(x)U1(x)
. (45)
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It is easily seen from (43) and (45) that due to the 2-nd order Darboux transformation, the
potential and solutions obtained in this way are completely expressed in terms of the known
effective mass function m∗(x) and the solutions U1(x),U2(x), φ(E , x) to the initial equation,
with no use of the solutions to the intermediate one with the potential V1(x).

Clearly, for the next transformation step to be made, one should take a new transformation
function χ2, that corresponds to the potential V2. It can be obtained by applying the operator
L = L2L1 to the solutions U3 corresponding to the eigenvalue V3:

χ2 =
1

m∗(x)

(
U ′′3 −

U ′′1
U1

U3

)
− d

dx
(ln W1,2(x))

W1,3(x)

m∗(x)U1(x)
.

Then it can be used to produce a new transformed operator L3 = d/dr + K3, K3 = −χ′2χ
−1
2

for generating new potential V3 and solutions φ3 and so on, according to (37)–(39).

2.5. The integral form of Darboux transformations

The transformed solutions (44) and (45) can be represented in the integral form. Let us
consider to this end the generalized Schrödinger equation written down as

−φ′′(x) + m∗(x)V (x) = Em∗(x)φ(x). (46)

Multiplying both sides of the equation (46) for the function φ(E , x) by U1(x) at the energy of
transformation λ1 and subtracting from the obtained expression the equation similar to (46)
but written down for U1(x) and multiplied by φ(E , x), we arrive at

d

dx
W1,E(x) = (λ1 − E)m∗(x)U1(x)φ(E , x). (47)

The last expression can be easily integrated:

W1,E(x) = (λ1 − E)

∫ x

a

m∗(x′)U1(x
′)φ(x′)dx′ + C. (48)

Inserting the last expression into the formula for φ1 (44), we arrive at the integral form of the
1st order transformed solutions:

φ1(x) =

[
C + (λ1 − E)

∫ x

a
m∗(x′)U1(x

′)φ(x′)dx′
]

m∗(x)U1(x)
. (49)

Here C and a are some arbitrary constants. By analogy, applying this technique to the equation
(3) for φ and U1, using (48) in (45), we get the integral form for the 2-nd order transformed
solutions

φ2(x) = (λ1 − E)φ(x)− (50)

− d

dx

(
ln W1,2(x)

)(
C + (λ1 − E)

∫ x

a
m∗(x′)U1(x

′)φ(x′)dx′
)

m∗(x)U1(x)
.

Here the integration limits depend on the boundary conditions. In particular, for regular
solutions satisfying the boundary conditions φ(x = 0) = 0, φ′(x)|x=0 = 1, the lower integration
limit is 0 and the upper one is x, while for the Jost solutions the integration limits are x and
∞, respectively. The constant C is determined by the values of the Wronskian at zero or at
infinity, depending on the way the problem is posed. Notice that the functions U and φ can
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be chosen in such a way that the constant C becomes zero. Analogously to (47), one has
W ′

1,2(x)/(λ1 − λ2) = m∗(x)U1(x)U2(x) and

W ′
1,2(x)

W1,2(x)
=

m∗(x)U1(x)U2(x)

c1 +
∫ x

dx′m∗(x′)U1(x′)U2(x′)
. (51)

Using the last formula and assuming C = 0, after some transformations one can represent φ2

as follows:

φ2 = (λ1 − E)φ(x) (52)

−(λ1 − E)U2(x)
∫ x

a
m∗(x′)U1(x

′)φ(x′)dx′

c1 +
∫ x

dx′m∗(x′)U1(x′)U2(x′)
.

Now let us consider the 2-nd order Darboux transformation at λ1 = λ2 ≡ λ. Earlier within
the first-order procedure, we already obtained two linear independent solutions (18) and (19)
at λ1 = λ2. The second transformation can be made by means of a linear combination of the
solutions η and η̂

χ1(x) = c1η(x) + η̂(x)

=
1√

m∗(x)U(x)

(
c1 +

∫ x

dx′U2(x′)m∗(x′)
)

. (53)

In order to find the transformed potential and solutions, calculate K2 = −χ′1/χ1 and K =
K1 + K2

K(x) =
m∗′(x)

2m∗(x)
− m∗(x)U2

1 (x)(
c1 +

∫ x
dx′U2(x′)m∗(x′)

) .

Plugging the last expression into the formula (40) which defines the potential, we arrive at

V2(x) = V (x)− (54)

− 2√
m∗(x)

d

dx

(
1√

m∗(x)

U2(x)m∗(x)

(c1 +
∫ x

dx′U2(x′)m∗(x′)

)
.

The operator L2 (31) with χ1 defined by (53), acts on the function φ1 represented by its integral
form (49) so that it leads to

φ2(x) = (λ− E)φ(x)− (55)

− U(x)(λ− E)
∫ x

dx′U(x′)m∗(x′)φ(x′)
c1 +

∫ x
dx′U2(x′)m∗(x′)

.

It is worth mentioning, that the formulae for the new potential V2 and the solution φ2 can be
obtained directly from the relations (43) and (45), if one takes into account that at λ1 = λ2 ≡ λ,
the expression (51) for d

dx
ln W1,2(x) should be changed by

d

dx
ln P (x) =

m∗(x)U2(x)

c1 +
∫ x

dx′U2(x′)m∗(x′)
,

with P (x) = c1 +
∫ x

dx′U2(x′)m∗(x′).
Without loss of generality one can take the linear combination of the functions η and η̂ as

χ1(x) = η(x) + Cη̂(x), and change (λ− E)φ(x) → φ(x) for simplification. Then formulae (54)
and (55) can be rewritten as

V2(x) = V (x)− (56)

− 2√
m∗(x)

d

dx

(
1√

m∗(x)

CU2(x)m∗(x)

(1 + C
∫ x

dx′U2(x′)m∗(x′)

)
.
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φ2 = φ(x)− U(x)C
∫ x

dx′U(x′)m∗(x′)φ(x′)
1 + C

∫ x

xo
dx′U2(x′)m∗(x′)

. (57)

The constant C plays the role of a normalization constant or the difference between the normal-
ization constants of the bound state λ for the potentials V2(x) and V (x), respectively. Notice,
the choice of arbitrary constants xo and C allows one to avoid the problems with zero-equal
denominators, or in other words, it means that one can make transformations on an arbitrary
bounded state and construct the potential without singularities. Notice also, that m∗(x) itself
does not lead to the singularities, because the effective mass m∗(x) 6= 0 and assumed to be
smooth and at least twice differentiable function with respect to space-variable.

The solution of the equation (3) with the potential (56) at the energy of transformation λ
can be achieved by means of operator L2 acting on the solution η from (18), obtained within
the first transformation step

η2(x) = L2η =
1√

m∗(x)

(
d

dx
− χ′(x)

χ(x)

)
1√

m∗(x)

1

U(x)
,

where χ′ is assumed to be of the form (53). Finally we get

η2(x) = − CU(x)

1 + C
∫ x

dx′m∗(x′)U2(x′)
. (58)

One can rewrite the potential (56) and the solutions (57) in terms of η2(x) as

V2(x) = V (x) +
2√

m∗(x)

d

dx
[
√

m∗(x)η2(x)U(x)] , (59)

φ2(x) = φ(x) + η2(x)C

∫ x

dx′U(x′)m∗(x′)φ(x′). (60)

The relations (56) – (60) are the results of performing two subsequent transformations with
the same energy. Therefore, it allows one to construct the phase-equivalent potentials. In-
deed, if C = N2

2 − N2 is the difference in normalization constants of the bound state λ for
the potentials V2(x) and V (x) respectively, then the formulae (56), (57) and (58) correspond
to phase-equivalent potentials whose scattering data coincide and differ only by a normaliza-
tion factor. Note, the phase-equivalent potentials have a different shape. They can be more
deeper and narrow or more shallow and wider and possess the same spectral data, except for
normalization constants.

If we assume the transformation function U(x) to be taken at the energy of the bounded
state, which we would like to add to the initial spectrum, and C = N2 is the corresponding
normalization constant, then the formulae (56), (57) and (58) give the possibility to construct a
potential with a new bounded state λ provided the other spectral characteristics of the spectra
produced by the potentials V2(x) and V (x), coincide. Notice, that the function U(x), which
is the solution of the initial equation with the potential V , has to be taken at the energy of
transformation λ. To sum up, it can be said that by means of the technique described above,
it is possible to remove some bounded states or to add new ones and to construct the phase-
equivalent potentials. The procedure can be repeated as many times as it is needed to construct
a new potential with a desirable spectrum.

3. Conclusion

The basic elements of contemporary micro- and nanoelectronics are the low-dimensional
structures which are the structures composed of QWs, quantum wires and quantum dots and
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produced by means of various techniques including most impressive one, molecular beam epi-
taxy. The entirety of such methods and techniques are sometimes termed as Quantum Engi-
neering or Quantum Technology. One of the most important issues of quantum engineering is
the construction of multi-quantum well structures possessing desirable properties. This prob-
lem appears in different contexts, ranging from the construction of multi-level computer logic
to photovoltaics of third generation [18,19]. From the theorist’s point of view, the problem
can be formulated as follows: assume one requires a definite spectrum of QW, because it is
determined by some specific needs and circumstances. Can one reconstruct the QW potential
which supports this very spectrum? In this paper we answer this question in affirmative and
outline the possible strategy of the QW potential reconstruction, if the spectrum of QW is
predetermined.

The proposed approach is based on the combination of Inverse Scattering Problem Method
and Darboux transformation. Bearing in mind that the effective masses of charge carriers in
the subsequent layers of different materials which make QW, are different, we match the inter-
twining operator technique, in order to take into account the position-dependent mass in Eq.
(3). The first- and second-order of Darboux transformations, as well as the chain of Darboux
transformations are considered, and interrelation between the differential and integral transfor-
mations is established. The developed approach allows one to construct phase-equivalent po-
tentials and to add (or if necessary, to remove) some states to (or from) the spectrum supported
by the initial potential, whose form can be established for instance, by means of ISP-method.
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