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Level crossing for quantum systems with some
degrees of freedom

A.A. Suzko∗ and E.P. Velicheva†

Joint Institute for Nuclear Research,
JINR, Dubna, Russia

Complex systems, such as nuclear, atomic, molecular ones and so on, are char-
acterized by some degrees of freedom, separation of which in strongly interacting
systems, as a rule, are not valid. One of the most useful methods in the treatment
of the quantum dynamical systems with some degrees of freedom is the adiabatic
representation method.

Here we investigate the role played by level crossing for collective motion in the
presence of ”fast” dynamics of separate particles in the system within the adiabatic
representation. The method presented permits one to construct a wide class of po-
tentials and corresponding solutions of the parametric equation in a closed analytical
form and, after that, to calculate the matrix elements of the exchange interaction. It
was shown that the main features of the exchange interaction determining the ”slow”
subsystem Hamiltonian essentially depend on the character of the parametric Hamil-
tonian: namely, it is given on the semi–axis or on the entire axis. As a consequence,
the problems of level crossing are different in both cases. It was established that in
the case of the parametric problem on the entire axis the induced scalar and vector
potentials and the basis functions are not singular at the degeneracy points of the
two states, while in the parametric problem on the half-axis, the potential, together
with its eigenfunctions and matrix elements of the exchange interaction, are singular
at these points. In particular, we have found that in the parametric problem on the
entire axis for a special choice of the normalization functions, the potential is trans-
parent and symmetric in the ”fast” variable and the exchange interaction between
the bound states for two-level systems are equal to zero for all values of the ”slow”
variables, even at the point of the degeneracy.

PACS numbers: 03.65 Nk, 03.65 Vf
Keywords: Inverse scattering problem, level crossing, exactly solvable models

1. Introduction

The adiabatic representation method is elaborated on the basis of a consistent formulation of
both connected problems: the parametric problem and the multichannel problem for the system
of equations with a covariant derivative. In this approach the Hamiltonian H is decomposed
into

H = hs ⊗ I + hf , (1)
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where hf ≡ hf (x) is the family of Hamiltonians depending parametrically on the slow variables.
The searched wave function Ψ(X) (X = {x, y}) of the total Hamiltonian is given by expansion

|Ψ(X) >=
∑

n

|n >< n|Ψ >=
∑

n

∫
ψn(x; y)Fn(x) (2)

in the ψn(x; y) self-adjoint parametric Hamiltonian hf (x) ≡ h(x)

h(x)|ψn(x; y) >= En(x)|ψn(x; y) >

h(x) = −∆y + V (x, y). (3)

Since the Hamiltonian h(x) is self-adjoint, its eigenfunctions form a complete orthonormal set
|ψn(x; y) >< ψn(x; y′)| = δ(y − y′),
< ψn(x; y) | ψm(x; y) >= δnm ∀x,

with elements depending on x parametrically. Upon substituting the expansion (2) into the
initial Schrödinger equation

HΨ(X) = EΨ(X) (4)

and using the relations of orthonormalization, we arrive at a multichannel system of gauge
equations

[−(∇x + A(x))2 + V (x)− P 2]F (x) = 0. (5)

Here A(x) and V (x) are the effective vector and scalar potentials, respectively, the matrix
elements of which are induced by the basis functions ψ(x; y) of the parametric problem (3)

Anm(x) =< ψn(x; y)|i∇x|ψm(x; y) >, (6)

Vnm(x) = < ψn(x; y)|h(x)|ψm(x; y) >≡
≡ En(x)δnm. (7)

Here, we assume that h(x) is real, limited, and continuous in x. Because, for each x, the
eigenfunctions are real valued and orthonormal then the induced couplings Anm = −Amn in (6)
are real and antisymmetric in n and m. The matrix elements of (6) of the induced connection
A can be computed in terms of the eigenfunctions of parametric equations (3) for the given
functional dependence of scattering data {S(x, k),M2(x), E(x)} on the slow coordinate variable
x.

In accordance with the general definition of the inverse scattering problem [1] and [2], the
parametric inverse problem [3] consist of the reconstruction of the potential and corresponding
solutions from the known scattering data {S(x, k),M2(x), E(x)} (in the Marchenko approach) or
the spectral data {ρ(x, k), N2(x), E(x)} (Gelfand-Levitan approach) parametrically depending
on the coordinate variable x. This dependence reflects the peculiarity of the nonstandard
parametric inverse problem. Specifying this dependence and employing the algebraic methods
of the inverse scattering problem, we present a wide class of potentials for which one can
construct exactly solvable models and, consequently, derive solutions in a closed analytic form.
These generalized Bargmann potentials are defined by the rational Jost functions f ≡ f+,

f(x; k) =
◦
f (k)

∏ k − iα(x)

k + iβ(x)
(8)

parametrically depending on the ”slow” dynamical variables x through the dependence of spec-
tral parameters on these variables. This situation is, to a certain extent, analogous to the theory
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of nonlinear evolution equations. The parametric Jost function (8) has N curves k = −iβj(x),
j = 1, 2, ...N, of simple poles and N curves of simple zeros k = iαj(x) defined as functions of
the parametric variable x.

For real potentials, the curves iαj(x) and −iβj(x) must be situated symmetrically with
respect to the imaginary axis in the complex k plane. In α(x), there are not only zeros on the
imaginary semi-axis corresponding to the bound states Re κj(x) = 0, Im κj(x) > 0 for each
value of x, but, also, zeros in the lower k half-plane with Im νj(x) < 0 (the number of simple
pole curves of βj(x) equals the total number of κj(x) and νj(x)). In this case, the scattering
matrix and the spectral function assume the form

S(x; k) =
◦
S (k)

∏ (k + iα(x))(k + iβ(x))

(k − iβ(x))(k − iα(x))
,

ρ(x; k) =
◦
ρ (k)

∏ (k − iβ(x))(k + iβ(x))

(k + iα(x))(k − iα(x))
. (9)

For such S(x; k) and ρ(x; k), the kernels of the integral equations of the parametric inverse
problem can be represented as the sums of terms with a factorized dependence on the fast
variable y: Q(x; y, y′) =

∑N
i Bi(x; y)Bi(x; y′). When the kernel Q is inserted into the base

parametric equation of the inverse problem,

K(x; y, y′) + Q(x; y, y′) + (10)

+

∞(y)∫

y(0)

K(x; y, y′′)Q(x; y′′, y′)dy′ = 0,

it is evident that the kernel of the generalized shift K(x; y, y′) also becomes degenerate:

K(x; y, y′) =
∑N

i Ki(x; y)Bi(x; y′).
As a consequence, the system of integral equations of the inverse problem is reduced to a system
of algebraic equations.

Then, the spherically nonsymmetric potential and solutions corresponding to it can be ex-
pressed in a closed analytic form in terms of the known solutions and spectral characteristics
by using the generalized equations of the parametric inverse problem,

V (x, y) =
◦
V (y)∓ 2

d

dy
K(x; y, y), (11)

φ(x; k, y) =
◦
φ (k, y) +

∞(y)∫

y(0)

K(x; y, y′)
◦
φ (k, y′)dy′. (12)

Integration limits in (10), (12), and the signs in (11) depend on the particular approach to the
inverse problem. The limits from y to ∞ and the minus sign correspond to the Marchenko
approach. Limits [0, y] and plus sign represent the Gelfand–Levitan approach.

Within the generalized Marchenko approach [4], the integral kernels Q(x; y, y′), dependent
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on x as a parameter

Q(x; y, y′) =
1

2π

∞∫

−∞

[
◦
S (k)− S(x; k)]

◦
f (k, y)

◦
f (k, y′)dk

+
m∑
n

M2
n(x)

◦
f (iκn(x), y)

◦
f (iκn(x), y′)

−
◦
m∑
n

◦
M

2

n

◦
f (i

◦
κn, y)

◦
f (i

◦
κn, y′) , (13)

are constructed by using two sets of the scattering data. These are the set {S(x; k), En(x),
M2

n(x)}, corresponding to equation (3) for every value of parameter x, and the ordinary scat-

tering data { ◦S (k),
◦
En,

◦
M

2

n}, corresponding to (3) with V (x; y) = 0 and
◦
V (y) 6= 0. The

functions
◦
f (k, y) are standard Jost solutions with the known potential

◦
V (y). Potentials

(11) and Jost solutions (12) are determined from K(x; y, y′), with respect to which, the linear
integral equation (10) is solved for every fixed x.

2. Exactly solvable models within the parametric inverse problem
on the semi-axis

For the parametric inverse problem, radial or on a semi-axis, when
◦
V (y) = 0 and, corre-

spondingly,
◦
S (k) = 1, the kernel of the basic integral equation (10) in the Marchenko approach,

Q(x; (y + y′)) =
1

2π

∞∫

−∞

[1− S(x; k)] exp[ik(y + y′)] dk

+
N∑
n

M2
n(x) exp[−κn(x)(y + y′)] , (14)

with the scattering matrix (9), can be rewritten as

Q(x; (y + y′)) =

−
N∑
n

Res S(k = iβn(x)) exp[−βn(x)(y + y′)] (15)

+
N∑
n

{−iRes S(k = iκn(x)) exp[−κn(x)(y + y′)]

+ M2
n(x) exp[−κn(x)(y + y′)]} .

Following the procedure of constructing phase–equivalent potentials suggested in [5] for the
one-dimensional problem and in [3] for the parametric problem, we shall reduce solution of the
inverse problem to the successive applications of two procedures. First, one can cancel out the

second summation in the right-hand side of (15) if the normalization functions M2
n(x) =

◦
M

2

n (x)
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are chosen to be equal to i Res S(k) at k = iκn(x),

◦
M

2

n (x) = i Res S(k)|k=iκn(x) =

= −2κn(x)(κn(x) + βn(x))

(κn(x)− βn(x))
× (16)

×
N∏

n′ 6=n

(κn(x) + βn′(x))(κn(x) + κn′(x))

(κn(x)− βn′(x))(κn(x)− κn′(x))
.

As a result, we obtain a simpler expression for the kernel Q ≡
◦
Q,

◦
Q (x; y, y′) =

N∑
n

An(x) exp[−βn(x)(y + y′)], (17)

where

An(x) =
2βn(x)(βn(x) + κn(x))

(βn(x)− κn(x))
×

×
N∏

n′ 6=n

(βn(x) + κn′(x))(βn(x) + βn′(x))

(βn(x)− βn′(x))(βn(x)− κn′(x))
. (18)

Inserting the kernel
◦
Q (x; y, y′) (17) into the parametric Marchenko equation (10), we obtain

◦
K (x; y, y′) +

N∑
n

An(x)
{

e−βn(x)y +

+

∞∫

y

◦
K (x; y, y′′)e−βn(x)y′′dy′′

}
e−βn(x)y′ = 0,

where the expression in braces is the Jost solution
◦
f (k = iβn(x), y) for the sought potential

◦
V (x; y). Such that

◦
K (x; y, y′) has a form similar

to that of◦
Q (x; y, y′) from (17) with a separable dependence on y and y′ and with a parametric dependence
on x,

◦
K (x; y, y′) = −

N∑
n

An(x)
◦
f (iβn(x), y) exp[−βn(x)y′].

(19)

Substituting this kernel of the generalized shift from the free wave to the Jost solution into the
triangular integral equation

◦
f (x; k, y) = exp(iky) +

∞∫

y

◦
K (x; y, y′) exp(iky′)dy′

we get, at k = iβn(x), a set of equations for
◦
f (iβn(x), y),

◦
f (iβn(x), y) =

N∑

n′
exp[−(βn′(x)y]P−1

n′n(x; y),
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where Pnn′(x; y) is defined as follows:

Pnn′(x; y) = δnn′ + An(x)
exp[−(βn(x) + βn′(x))y]

βn(x) + βn′(x)
.

Then, by substituting (19) into the parametric equations of the inverse problem (11), (12), we
obtain

◦
V (x; y) = −2

d2

dy2
ln det ||P (x; y)||, (20)

◦
f± (x; k, y) = exp(±iky) + (21)

+
N∑

nn′
An(x)P−1

nn′(x; y)
exp[−(βn(x) + βn′(x)∓ ik)y]

(βn(x)∓ ik)
.

A similar situation is obtained in the Gelfand–Levitan approach, only, there, the normalizing
functions N2

n(x) are expressed through Res [f+(x; k)f−(x; k)]−1 at the points k = iκn(x):

N2
n(x) = 4iκ2

n(x)[(df+(x; k)/dk)|k=iκn(x)f−(iκn(x))]−1.

The corresponding algebraic formulae for the one-dimensional Bargmann potentials and their
solutions [5] can be obtained directly if we set κn(x) ≡ κn and βn(x) ≡ βn.

At the second stage, by using the corresponding
◦
f (x; k, y) as the initial solutions, we obtain a family of potentials and solutions for arbitrary

normalizing functions M2
n(x) that do not obey the condition (16):

◦
M

2

n (x) < M2
n(x). Since the

scattering function S(x; k) is independent of the choice of the normalization functions M2
n(x),

we have S(x; k) =
◦
S (x; k). As a result, the integral term in a generalized expression such

as (13) for Q(x; y, y′) vanishes. Since, on the other hand, both V (x; y) and
◦
V (x; y) possess

the same potential curves (curves of bound states) En(x) =
◦
En (x) but different normalization

factors M2
n(x) and

◦
M

2

n (x), respectively, we find that

Q(x; y, y′) = (22)

=
N∑
n

(M2
n(x)− ◦

M
2

n (x))
◦
f (iκn(x), y)

◦
f (iκn(x), y′).

And similarly, the kernel of the generalized shift K(x; y, y′) is written as

K(x; y, y′) = (23)

= −
N∑
n

(M2
n(x)− ◦

M
2

n (x))f(iκn(x), y)
◦
f (iκn(x), y′).

Inserting K(x; y, y′) and Q(x; y, y′) into the basic parametric Marchenko equations (10)–(12),
we derive the following relations for the potential and Jost solutions:

V (x; y) =
◦
V (x; y) + 2

d2

dy2
ln det ||P (x; y)|| , (24)
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f±(x; k, y) =
◦
f± (x; k, y)−

N∑
nm

(M2
n(x)− ◦

M
2

n (x))×

×
◦
f (iκn(x), y)P−1

nm(x; y)

∫ ∞

y

◦
f (iκm(x), y′)

◦
f± (k, y′)dy′.

The explicit dependence on the fast variables is defined by the Jost solutions (21) determined
at k = iκn(x), i.e., on the level-energy curves depending on the parametric variable x. Here we
employed the notation

Pnm(x; y) = δnm + (M2
n(x)− ◦

M
2

n (x))×
×

∫ ∞

y

◦
f (iκn(x), y′)

◦
f (iκm(x), y′)dy′.

Since S(x; k), corresponding to the two-dimensional potentials V (x; y) (24), is independent of

the normalizations M2
n(x), S(x; k) =

◦
S (x; k), the formula (24) represents a parametric family

of potentials depending on N parametric functions M2
n(x). A change of the normalization

functions M2
n(x) of the parametric eigenstates leads to a change in the potentials, the Jost,

regular, and basis solutions of the parametric Hamiltonian, and the matrix elements of the
exchange interaction, and, therefore, strongly influences the behavior of the quantum systems.

2.1. Bargmann potentials with two potential curves

Let us now present the case with two potential curves in the problem on the semi-axis. The
Jost function (8) can be written in the form

f(x; k) =
(k − iκ1(x))(k − iκ2(x))

(k + iβ1(x))(k + iβ2(x))
;

Im {κj(x)} = Im {βj(x)} = 0, j = 1, 2 (25)

and

S(x; k) = (26)

=
(k + iκ1(x))(k + iβ1(x))

(k − iβ1(x))(k − iκ1(x))

(k + iκ2(x))(k + iβ2(x))

(k − iβ2(x))(k − iκ2(x))
.

Two pole curves correspond to the zero curves k = iκj(x) of the parametric Jost function
f+(x; k)), the other pole curves correspond to the pole trajectories k = iβj(x) of the parametric
Jost function f−(x; k).

We have, necessarily, βj(x) > 0 (for the Jost function f+(x; k) to be analytic in the upper
half-plane k for all x). When κj(x) > 0, we have the bound state curves (the potential curves of
bound states Ej(x) = −κ2

j(x)); when κj(x) < 0, we do not have any bound states. In principle,
the functions α(x) in (8), (9) can change from negative values α(x) = −ν(x) (anti-bound state
trajectory) to positive values α(x) = κ(x). If αj(x) = −νj(x) < 0 ∀x, the potential is not
deep and wide enough to produce bound states and the potential corresponds to S(x, k) with
pole curves at k = iβj(x). Here we assume that κj(x) > 0, to provide for the existence of two
bound state curves. The ordering of the potential curves Ei < Ei+1 is assumed. To simplify the
investigation of the problem, we take the normalizations of the bound state wave functions in
the form (16)

M2
1 (x) = (27)
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= −2κ1(x)(κ1(x) + β1(x))

(κ1(x)− β1(x))

(κ1(x) + β2(x))(κ1(x) + κ2(x))

(κ1(x)− β2(x))(κ1(x)− κ2(x))
,

M2
2 (x) =

= −2κ2(x)(κ2(x) + β2(x))

(κ2(x)− β2(x))

(κ2(x) + β1(x))(κ2(x) + κ1(x))

(κ2(x)− β1(x))(κ2(x)− κ1(x))
.

Thus, the potential V (x, y) is determined only by the spectral data κj(x) and βj(x), j = 1, 2,
and corresponds to one of the family of potentials characterized by the same energy levels Ej(x)
and the same parametric S(x; k) (27) with four pole curves. From the relations (20), (21), we
obtain the two–dimensional potential V (x, y) and the corresponding normalized wave functions

ψj(x, y) = Mj(x)f(iκj(x), y), j = 1, 2
of the self-energy curves E1,2(x). The matrix element A12(x) =

∫
ψ1(x; y)∂xψ2(x; y)dy of the

induced connection (6) is computed in terms of the analytic functions ψ1,2(x; y).
From the normalizations M2

j (x) being positive definite, the conditions β2(x) ≥ κ2(x) and

β1(x) ≥ κ1(x) ≥ β2(x) follow. This means that E2(x) ≥ β2
2(x) ≥ E1(x). If the levels E1(x)

and E2(x) move towards each other, one or both of them would be equal to β2
2(x) at any point

of x = x′. It can be easily seen from the relations (27) that the corresponding normalizing
function M2

1 (x) or M2
2 (x) becomes singular when κ1(x

′) = β2(x
′) or κ2(x

′) = β2(x
′). If κ1(x

′) =
β2(x

′) = κ2(x
′), both normalization functions M2

1 (x) and M2
2 (x) have double poles at the point

of the degeneracy x = x′. It can be seen from the relations (19) and (20) that the potential
V (x; y) with the pertinent normalized functions ψ1,2(x, y) has a double pole at this point x = x′

somewhere on the positive y-axis, and the matrix elements of the induced vector potentials (6),
determined by ψ1,2(x, y), are singular, too. One can see from (16) that the same investigations
with singular behaviors of normalizing functions are valid for potentials with an arbitrary
number of levels when two levels move closer together. Remind of the fist investigations of
normalizations in [6] at avoided level crossings.

3. Transparent Potentials

The one-dimensional inverse problem on the entire axis −∞ < y < ∞ with the zero-th
reflection coefficient, Sref (k) = 0, describes transparent (reflectionless) potentials along the
variable y. If the reflection function Sref (x; k) is chosen to be equal to zero at all energies
and at all values of the parametric variable x, then the integral in the relation for Q(x; y, y′)
vanishes and only the sum over the bound states remains. The transmission coefficient Str,
with an absolute value equal to unity, is a rational function,

Str(x; k) =
∏ k + iκ(x)

k − iκ(x)
, (28)

depending on the parametric variable x.
The relations for the potentials and solutions can be expressed in terms of normalized eigen-

functions and represented in a most symmetric and convenient form. Following [7], introduce
the function

λn(x; y) = γn(x) exp(−κn(x)y).

Then the formula for K(x; y, y′) can be written as

K(x; y, y′) = −
N∑
n

γn(x)ψn(x; y) exp(−κn(x)y′)

= −
N∑
n

ψn(x; y)λn(x; y′). (29)
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For the normalized eigenfunctions ψn(x; y) from (12), we obtain

ψn(x; y) =
N∑
j

λj(x; y)A−1
jn (x; y), (30)

with the matrix Ajn(x; y) given by

Ajn(x; y) = δjn +
λj(x; y)λn(x; y)

κn(x) + κj(x)
. (31)

Finally, the kernel K(x; y, y′) and the potential can be represented as

K(x; y, y′) = −
N∑
n

N∑
j

λj(x; y)A−1
jn (x; y)λn(x; y′),

V (x; y) = −4
m∑
n

κn(x)ψ2
n(x; y). (32)

Recall that these relations are obtained for the specific case of the zero reflection function
Sref (x; k) = 0 ∀x.

Exactly solvable models with time-dependent symmetric in y potentials.

Note that the symmetric transparent potentials for each fixed value of x and the pertinent
wave functions are completely defined by the energy levels, since in this case the normalizations
of the bound state functions are expressed as

γ2
n(x) = 2κn(x)

∏

m6=n

∣∣∣κm(x) + κn(x)

κm(x)− κn(x)

∣∣∣ . (33)

Consider the simple example of two-dimensional exactly solvable models for two-level systems
with symmetric in y potentials. Taking the equation (30) for the normalized eigenfunctions
ψ1(x; y) and ψ2(x; y) and carrying out some simplifications, we obtain

ψ1(x; y) = √
2κ1(x)b(x) cosh(κ1(x)y)

cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x)− κ2(x))y]
,

(34)

ψ2(x; y) =

=

√
2κ2(x)b(x) sinh(κ2(x)y)

cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x)− κ2(x))y]

with b(x) = |(κ1(x)+κ2(x))/(κ1(x)−κ2(x))|. Taking an account of (34) for V (x; y) in (32), we
get the potential in an explicit form convenient for analysis:

V (x; y) = −8b(x)× (35)

κ2
1(x) cosh2(κ1(x)y) + κ2

2(x) sinh2(κ2(x)y)

{cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x)− κ2(x))y]}2
.
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Obviously, the potential V (x; y) is symmetric in y for each value of the parametric variable x.
It is also easily seen from (34) that the eigenfunction of the ground state ψ1(x; y) is symmetric
and ψ2(x; y) is antisymmetric in y for each fixed value of x, as it is required for the problem on
the entire axis −∞ < y < ∞ with a potential V (x; y) symmetric in y for each fixed x.

As a limiting case, we can consider κ2(x) → κ1(x). It can be seen from (36) and (34) that if
κ2(x) = κ1(x) at any point of x = x′, the limiting values of the potential and the wave functions
are equal to zero, V (x′; y) = ψ1(x

′; y) = ψ2(x
′; y) = 0 ∀y, while in the above considered problem

on the half axis 0 ≤ y < ∞, the potential, together with its eigenfunctions, are singular at
x = x′.

Matrix elements of the exchange interaction A12(x), induced by basis functions of the para-
metric instantaneous Hamiltonian, can be written in the form

A12(x) = 2b(x)
√

κ1(x)κ2(x)×
×

[∫ ∞

−∞

y(∂κ2(x)/∂x) cosh(κ1(x)y) cosh(κ2(x)y)

G2(x; y)
(36)

−cosh(κ1(x)y) sinh(κ2(x)y)(∂G(x; y)/∂x)

G3(x; y)
dy

]
+

+C(x)
[∫ ∞

−∞

cosh(κ1(x)y) sinh(κ2(x)y)

G2(x; y)
dy

]

with G(x; y) = cosh[(κ1(x) + κ2(x))y] + b(x) cosh[(κ1(x)− κ2(x))y] and C(x) = 2
√

b(x)κ1(x)×
∂(

√
b(x)κ2(x))/∂x. It can be easily shown that these integrals vanish. Indeed, G(x; y) and

∂xG(x; y) are even functions in y and integrands are odd functions of y, i.e., A12(x) = 0 ∀x.
This means that there is no coupling between the eigen-states ψ1(x; y) and ψ2(x; y) for any
point of the variable x for the transparent symmetric in y potentials. The transition amplitude
between the bound state functions ψ1(x; y) and ψ2(x; y) is equal to zero because it is defined
by the zero matrix elements A12(x) = 0 ∀x.

The choice of normalizing functions γ2
n(x) of the energy-level states, which do not obey

the condition (33), leads to loss of symmetry in y of potentials, and to another behavior of
the parametric basis functions. As a result, the matrix elements of the exchange interaction
A12(x) 6= 0, that is the coupling between neighboring states takes place and the transitions take
place, as well. As a consequence of our analysis, we can conclude that the choice of normalization
functions of the parametric Hamiltonian eigen-states strongly influences the behavior of the
quantum systems.

4. Conclusions

The method presented permits one to construct a wide class of potentials and corresponding
solutions of the parametric equation (3) in a closed analytical form and, after that, to calculate
the matrix elements of the exchange interaction. The first procedure is an algebraic one,
but the second step is, in general, numerical. Therefore, the method is semi-analytical. This
approach allows one to investigate the influence of the parametric spectral data on the behavior
of the potentials, of the basis functions of the parametric Hamiltonian, and of the matrix
elements of the exchange interaction. It was shown that the main features of the exchange
interaction determining the slow subsystem Hamiltonian essentially depend on the character
of the parametric (fast) Hamiltonian: namely, the fast subsystem Hamiltonian is given on the
semi–axis 0 ≤ y < ∞ or on the entire axis −∞ < y < ∞. As a consequence, the problems
of level crossing are different in both cases. The matrix elements of the coupling Anm(x) have
no singularities at the degeneracy points of two-levels if the consideration is made within the
parametric problem on the entire line and Anm(x) are singular at the degeneracy points if the
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consideration is made within the parametric problem on the half-axis. It was established that
in the case of the parametric problem on the entire axis the induced scalar and vector potentials
and the basis functions are not singular at the degeneracy points of the two states, while in
the parametric problem on the half-axis, the potential, together with its eigenfunctions and
matrix elements of the exchange interaction, are singular at these points. We studied the effect
of the normalizing functions on the properties of the quantum systems. In particular, we have
found that in the parametric problem on the entire axis for a special choice of the normalization
functions (33), the potential V (x; y) is transparent and symmetric in the ”fast” variable y and
the exchange interaction between the bound states for two-level systems are equal to zero for
all values of the ”slow” variables, even at the point of the degeneracy. Our approach can be
recommended for the investigation of the Landau–Zener transitions and level crossing problems.
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