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Analytic approach in QCD and hadronic
decays of the tau lepton
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High precise measurements of vector and axial-vector spectral functions in
hadronic decays of the τ lepton stimulate the further theoretical researches of vari-
ous forms of perturbative expansions and nonperturbative effects. Advantages and
self-consistency of the the Shirkov–Solovtsov analytic approach in describing the
hadronic decays the τ lepton are demonstrated.
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1. Introduction

The τ lepton is the only lepton known at present whose mass, Mτ = 1.777 GeV, is large
enough in order to produce decays with a hadronic mode. At the same time, in the context
of Quantum Chromodynamics (QCD), the mass is sufficiently small to allow one to investigate
perturbative and non-perturbative QCD effects. The experimental material on the τ lepton
decay into hadrons obtained with a record accuracy for hadronic processes [1–3] gives a unique
possibility for the study of QCD at low energy scale. The theoretical analysis of the hadronic
decays of a heavy lepton has been performed [4] before the experimental discovery of the τ
lepton in 1975 and since then this process is intensively studied.

The original theoretical expression for the width Γ(τ− → hadrons ντ ) involves integration
over small values of timelike momentum [4]. The perturbative description with the standard
running coupling becomes ill-defined in this region and some additional ansatz has to be applied
to get a finite result for the hadronic width. To this end, one usually transforms the initial
expression, by using Cauchy’s theorem, to a contour representation for Rτ [5], which allows
one to give meaning to the initial expression and, in principle, perform calculations in the
framework of perturbative QCD. Assuming the validity of this transformation it is possible to
present results in the form of a truncated power series with αs(Mτ ) as the expansion parameter
[6, 7]. There are also other approaches to evaluating the contour integral. The Le Diberder
and Pich prescription [8] allows one to improve the convergence properties of the approximate
series and reduce the renormalization scheme (RS) dependence of theoretical predictions. The
possibility of using different approaches in the perturbative description of τ lepton decay leads
to an uncertainty in the value of αs(Mτ ) extracted from the experimental data. Moreover,
any perturbative description is based on this contour representation, i.e., on the possibility of
converting the initial expression involving integration over timelike momenta into a contour
integral in the complex momentum plane. To carry out this transition by using Cauchy’s
theorem requires certain analytic properties of the hadronic correlator or of the corresponding
Adler function. However, the occurrence of incorrect analytic properties in the conventional
perturbative approximation makes it impossible to exploit Cauchy’s theorem in this manner
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and, therefore, prevents rewriting the initial expression for Rτ in the form of a contour integral
in the complex momentum-plane.

It is well known that the perturbation theory (PT), which is a basic tool of calculations in
quantum field theory, as a rule cannot be exhaustive in the low energy region of QCD. However,
a structure of an initial perturbative approximation of some quantity is not a rigid construction
fixed once and for all, but admits a considerable modification due to specific properties of quan-
tum field theory. Such modification is based on further information of a general character about
the sum of the series. In particular, the properties of renormalization-group (RG) invariance
[9], which is lost in a finite order of the initial expansion, allow rearrangements of the pertur-
bative series in terms of the invariant charge. In this case, the properties of the series change
essentially. In distinction to the initial expression containing large logarithms, the expansion
obtained within the RG method can be used for analyzing the ultraviolet region. However,
the perturbative series so derived are ill-defined in the infrared region and the correct analytic
properties of the series in the complex Q2-plane are violated due to unphysical singularities of
the perturbative running coupling, a ghost pole in the one-loop approximation (see discussion
in [10, 11]).

The difficulty associated with these unphysical singularities is overcome in the analytic
approach proposed by Shirkov and Solovtsov [12]. This approach modifies the perturbative
expansion on the basis of general properties of the theory so that the new approximations reflect
fundamental principles of the theory—renormalization invariance, spectrality, and causality.
In the new expansion the correct analytic properties are restored, and the property of RG
invariance is preserved [12]. Further developments and applications of the Shirkov–Solovtsov
analytic approach have been considered in many papers (see [13] as the recent review).

The method based on the Shirkov–Solovtsov analytic approach and called analytic pertur-
bation theory (APT) [14] ensures the correct analytic properties of such important objects as
the hadronic correlator or of the corresponding Adler function, leads to equality between the
initial theoretical expression for the width Γ(τ− → hadrons ντ ) and the corresponding contour
representation.

In the analysis reported here we reveal features of the application of PT and APT expansions
in studying the process of τ decay into hadrons, and in particular for the description of hadronic
widths associated with vector and axial-vector non-strange quark currents, and also for Adler
functions, which are connected to these currents, down to the lowest energy scale.

2. Analytic perturbation theory

A main object in a description of hadronic decays of the τ lepton and of many other physical
processes is the correlator Π(q2) or the corresponding Adler function D(Q2), which is connected
to the correlator by the formula

D(Q2) = −Q2dΠ(−Q2)

dQ2
. (1)

We use the standard convention Q2 = −q2 > 0 in the Euclidean region.
The integral representation for the D-function is given in terms of the R-function, R(s) ≡

Im Π(s)/π,

D(Q2) = Q2

∫ ∞

0

ds

(s + Q2)2 R(s) . (2)

The representation (2) defines the function D(Q2) as the analytic function in the complex
Q2-plane with the cut along the negative real axis.
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It is convenient to separate QCD contributions, d(Q2) and r(s), in the functions D ∝ 1 + d
and R ∝ 1 + r , respectively, which are related by the formulae

d(Q2) = Q2

∫ ∞

0

ds

(s + Q2)2 r(s), (3)

r(s) = − 1

2πi

∫ s+iε

s−iε

dz

z
d(−z) . (4)

The integration contour in (4) lies in the region of analyticity of the integrand and encircles
the cut of d(−z) on the positive real z axis.

In the APT the basic object is a spectral function ρ(σ) which enters into some integral
representation. In particular, for two-point functions, it is the Källén–Lehmann representation;
whereas for structure functions for inelastic lepton–hadron scattering, the integral representa-
tion is that of Jost–Lehmann–Dyson. The spectral function ρ(σ) for the objects under consider-
ation here can be obtained by using the perturbative series as a initial approach. Truncated at
the three-loop level, the perturbative d-function, rewritten in terms of the perturbative running
coupling, apt(Q

2) = ᾱs(Q
2)/π, is

dpt(Q
2) = apt(Q

2) + d1a
2
pt(Q

2) + d2a
3
pt(Q

2) , (5)

where in the MS scheme for three active quarks (nf = 3) relevant in τ decay, the expansion

coefficients are dMS
1 = 1.6398 and dMS

2 = 6.3710 [15].
This expansion generates the following approximation to the spectral function ρ(σ):

ρ(σ) = %0(σ) + d1%1(σ) + d2%2(σ) , (6)

where the coefficients d1 and d2 are the same as in the PT series (5) and the expansion functions
are determined by the discontinuity of the corresponding power of the perturbative running
coupling, %n(σ) = Im[an+1

pt (−σ − iε)].
By using (6), we obtain the d-function in the form of the expansion (not a power series in a)

dan(Q
2) = ∆(1)

an (Q2) + d1∆
(2)
an (Q2) + d2 ∆(3)

an (Q2) , (7)

where the ∆
(n)
an are analytic functions and ∆

(1)
an (Q2) = aan(Q

2) (see [16] for details).
The Euclidean running coupling aan(Q

2) and the running coupling ãan(s) defined in the
Minkowskian region are expressed through the function %0(σ) [13, 17]. In the leading order

%
(1)
0 (σ) =

1

β0

π

ln2(σ/Λ2) + π2
, (8)

a(1)
an (Q2) =

1

β0

[
1

ln(Q2/Λ2)
+

Λ2

Λ2 −Q2

]
, (9)

ã(1)
an (s) =

1

β0

[
1

2
− 1

π
arctan

ln(s/Λ2)

π

]
, (10)

where β0 = (11 − 2nf/3)/4 . The expression in the Euclidean region (9) contains the usual
logarithmic term that coincides with the perturbation expression containing the ghost pole at
Q2 = Λ2. The contribution of this pole is compensated by the second term in Eq. (9) of a power
character in Q2. Written in terms of the initial apt, this term is of the structure of exp(−1/apt)
and therefore makes no contribution to the power series expansion in the coupling apt. That is,
the Q2-power contribution in the Euclidean running coupling (9), invisible in PT, is restored
automatically on the basis of the analyticity principle. In contrast to the perturbative running
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FIG. 1. Renormalization scheme dependence of the d-function as a function of Q2 for the PT and
APT approaches. The APT results are shown as solid lines which are very close to each other and
practically merge into one curve.

coupling apt(Q
2), the analytic function aan(Q

2) has no unphysical singularities: the ghost pole
and corresponding branch points (which appear in higher order) are absent. It should be
stressed, the APT and PT coincide with each other in the asymptotic region of high energies.

It should be stressed that a value of the running coupling defined in the Minkowskian region,
ãan(s), is less than a value of the running coupling in the Euclidean region, aan(Q

2), at the same
magnitude of argument [17, 18].

3. Renormalization scheme dependence

A significant source of theoretical uncertainty arises from the RS dependence of the results
obtained due to the inevitable inclusion of only a finite number of terms in the PT series. In
QCD, that uncertainty is the greater, than smaller a value of typical energy of the process.

There are no general principles that give preference to a particular RS, and in this sense, all
schemes are equivalent. The APT method improves this situation and gives very stable results
over a wide range of renormalization schemes. To demonstrate this fact, in Fig. 1 we plot
functions dpt(Q

2) and dan(Q
2) in different RS. It is seen that predictions in the perturbative

approach for d(Q2) obtained within different RS diverge considerably (see dashed curves A and
B). Note should be made of the fact that the schemes A and B are similar to each other and
to the optimal PMS [19] and ECH [20] schemes in the sense of the cancellation index [21]:
CA ' CB ' 2. For the ECH method, the cancellation index is minimal, equaling unity. The
cancellation index for the MS scheme turns out to be somewhat bigger, CMS ' 3.1.

In Fig. 1, we draw the curves representing PT results in the PMS, ECH, MS and K schemes.
For the same schemes, in Fig. 1 we also present results obtained in the APT approach. In
this case the scheme arbitrariness is extremely small, and all the curves corresponding to the
schemes A, B, PMS, ECH, MS, and K merge into one thick solid curve. Thus, in the APT,
the scheme arbitrariness is very dramatically reduced as compared to that in analogous PT
calculations.

4. Ratio Rτ

The total hadronic width of the τ lepton is given by difference of its total width and the
partial widths for the electronic and muonic decays: Γ(τ− → hadrons ντ ) = Γtot − Γe − Γµ. In
an analogy to well-known Drell-ratio for the e+e− annihilation into hadrons, one can define a

209



O.P. Solovtsova

ratio Rτ

Rτ ≡ Γ(τ− → hadrons ντ )

Γ(τ− → ` ν̄` ντ )
.

The theoretical expression for Rτ can be presented as follows

Rτ = 3 (|Vud|2 + |Vus|2) SEW (1 + δτ ) , (11)

where Vud and Vus are elements of the CKM quark mixing matrix, SEW is the electroweak
factor, and the QCD contribution, δτ , is expressed via r(s) as

δτ = 2

∫ M2
τ

0

ds

M2
τ

(
1− s

M2
τ

)2 (
1 + 2

s

M2
τ

)
r(s) . (12)

Clearly, that within the PT the integral (12) cannot be evaluated directly due to unphysical
singularities of the PT running coupling lying in the range of integration.

The most useful trick to rescue the situation is to appeal to analytic properties of the
correlator Π(q2). The relations between the functions r(s) and d(Q2) allow us to represent δτ

as a contour integral in the complex z plane by choosing the contour to be a circle of radius
|z| = M2

τ [6]

δτ =
1

2πi

∮

|z|=M2
τ

dz

z

(
1− z

M2
τ

)3 (
1 +

z

M2
τ

)
d(−z) . (13)

It should be stressed that expressions (12) and (13) are equivalent only when the above-
mentioned analytic properties are maintained.

It would seem that the transformation to the contour representation (13) allows one to avoid
this difficulty, since in this case unphysical singularities of the running coupling lie outside of
the contour, and the procedure of integration can formally be easily accomplished. However,
in our opinion, this trick (“sweeping the difficulty under the rug”) does by no means solve the
problem. Actually, incorrect analytic properties of the running coupling result in (12) and (13)
for δτ being no longer equivalent [14, 22], and, if one remains within PT, nothing can be said
about the errors introduced by this transition. The APT may eliminate these problems.

The PT description is based on the contour representation and can be developed in the
following two ways. In the Braaten’s (Br) method [7] the quantity (13) is represented in the
form of truncated power series with the expansion parameter aτ = ᾱs(M

2
τ )/π. In this case the

three-loop representation for δτ is

δBr
τ = aτ + r1 a2

τ + r2 a3
τ , (14)

where the coefficients r1 and r2 in the MS scheme with three active flavors are r1 = 5.2023 and
r2 = 26.366 [7].

The method proposed by Le Diberder and Pich (LP) [8] uses the PT expansion of the
d-function (5). It results to the following non-power representation

δLP
τ = A(1)(a) + d1 A(2)(a) + d2 A(3)(a) (15)

with

A(n)(a) =
1

2πi

∮

|z|=M2
τ

dz

z

(
1− z

M2
τ

)3 (
1 +

z

M2
τ

)
an(z) . (16)

Both these PT approaches, are widely used in the analysis of τ -decay data. However, their
status is different. The formula (14) can be obtained self-consistently. In expression (12) one has
to use for r(s) the initial perturbative approximation with the expansion parameter aµ. Then,
after integration over s, the logarithmic terms containing ln(M2

τ /µ2) are removed by setting
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µ2 = M2
τ . The same result is obtained if the contour representation (13) is used and the d-

function is taken in the form the initial perturbative approximation which preserves the required
analytic properties. As for the representation (15), it will be consistent with expressions (12)
and (13), if a(z) has analytic properties of the Källén–Lehmann type. The use of the standard
PT running coupling with unphysical singularities in (16) breaks this consistency.

The APT description can be equivalently phrased either on the basis of the original expres-
sion (12), which involves the Minkowskian quantity r(s), or on the contour representation (13),
which involves the Euclidean quantity d(q2). Within the framework of the APT approach, both
forms can be rewritten in terms of the function ρ(σ) as [14]

δτ =
1

π

∫ ∞

0

dσ

σ
ρ(σ)− 1

π

∫ M2
τ

0

dσ

σ

(
1− σ

M2
τ

)3

×
(

1 +
σ

M2
τ

)
ρ(σ) . (17)

In Fig. 2, we illustrate the dependence of the Rτ -ratio on the running coupling in the PT(Br)
and APT approaches, comparing the convergence properties in the one-loop (dotted lines), two-
loop (dashed lines), and three-loop (solid lines) approximations. Numbers above the curves
specify the order of the approximation. The shaded area shows the corridor of experimental
errors for Rexpt

τ = 3.646± 0.022 [23]. This figure shows, that the convergence properties of the
APT expansion seem to be much improved compared to those of the PT expansions.
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FIG. 2. The PT(Br) and APT predictions for the Rτ ratio vs. the running coupling in the MS scheme.
The numbers labelling the curves denote the level of the loop expansion used.

The APT approach allows one to construct a series for which RS dependence is dramatically
reduced. For the hadronic τ decay it is easy for understanding if one takes into account the
result which is shown in Fig. 1 for d-functions in different RS: instead of RS unstable and
rapidly changing PT results, the APT predictions are practically RS independent.

In the case of massless quarks, the detailed APT analysis of the inclusive τ decay on the
three-loop level has been performed in [24]. This investigation together with other results
allows us to formulate the following features of the APT method: (i) this approach maintains
the correct analytic properties and leads to a self-consistent procedure of analytic continuation
from the spacelike to the timelike region; (ii) it has much improved convergence properties
and turns out to be stable with respect to higher-loop corrections; (iii) renormalization scheme
dependence of the results obtained within this method is reduced dramatically.

5. Vector and axial-vector channels in the tau decay

In this section we compare our theoretical result with results that we get from the exper-
imental data on hadronic decays of the τ lepton presented by the ALEPH Collaboration [3].
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These publicly accessible data have been intensively used in various QCD studies including
the determination of the strong coupling constant, the test of the conception of quark-hadron
duality, the application in the evaluation of the anomalous magnetic moment of the muon and
so one.

From the complete analysis of the τ branching ratios [3], it is possible experimentally to
separate the non-strange vector and axial-vector hadronic τ decay channels, V −ντ and A−ντ ,
respectively. Thereof the inclusive observable Rτ -ratio can be written down as

Rτ = Rτ,V + Rτ,A + Rτ,S , (18)

where Rτ,V and Rτ,A are contributions corresponding to the vector and axial-vector non-strange
quark currents, Γ(τ− → hadronsS=0), and Rτ,S includes strange decays, Γ(τ− → hadronsS=−1).
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FIG. 3: The total inclusive vector current function.

Within the perturbative approximation with massless quarks the vector and axial-vector
contributions to Rτ coincide with each other

Rτ,V = Rτ,A =
3

2
|Vud|2(1 + δτ ) , (19)

where δτ is given by the expression (12). However, the experimental measurements shown that
these components are not equal to each other.
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FIG. 4: The total inclusive vector current function.
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FIG. 5: The inclusive τ axial-vector function (without the pion pole).

Figs. 3 and 4 show the ALEPH measurements for the vector and the axial-vector non-strange
quark currents, functions RV (s) and RA(s), respectively. Note that the normalization of the
ALEPH functions v1 (s) and a1 (s) differ from that we use here: at the parton-level our function
R(s) is equal to 1, therefore RV/A(s) = 2 v1 (s)/a1 (s).

The ratios Rτ,V and Rτ,A can be obtained through vector and axial-vector functions, RV (s)
and RA(s), as

R
exp/theor
τ,V/A = R0

M2
τ∫

0

ds

M2
τ

(
1− s

M2
τ

)2

×
(

1 +
2s

M2
τ

)
R

exp/theor
V/A (s), (20)

where R0 ≡ 3|Vud|2SEW, |Vud| = 0.9752±0.0007 and SEW = 1.0194±0.0040 (see [3] for details).
The experimental value obtained by the ALEPH collaboration for the vector channel is

Rexp
τ,V = 1.787± 0.013. (21)

In paper [26] the method based on the APT approach, involving a summation of threshold
singularities [25] and taking into account the nonperturbative character of the light quark
masses has been described. Here we use this method for studying inclusive characteristics
hadronic decays of the τ lepton. As a first step, we reproduce the central experimental value
of the ALEPH data for the vector ratio

Rtheor
τ,V = 1.79 = Rexp,centr

τ,V . (22)

The experimental value obtained by the ALEPH collaboration for the total axial-vector
channel is

Rexp
τ,A = 1.695± 0.013. (23)

Note the inclusive axial-vector function which show in Fig. 4 does not contain the pion pole.
Using the branching fraction for the π−ν mode, which is given as (10.83±0.11)% [3], we subtract
from (23) this pole contribution and get

Rexp
τ,A1 = 1.087± 0.015. (24)

Within the the same theoretical framework as for Rtheor
τ,V , we obtained Rtheor

τ,A1 = 1.085.

The ALEPH measurements allows us to study the D-function in the non-strange vector and
axial-vector channels:

D
exp/theor
V/A (Q2) = Q2

∫ ∞

0

ds
R

exp/theor
V/A (s)

(s + Q2)2
. (25)
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Although the function RV/A(s) experimentally is not known for all values of s, it is possible
to use the following expression

RV/A(s) = Rexp
V/A(s) θ(s0 − s) + Rtheor

V/A (s) θ(s− s0) , (26)

where, for example, the continuum threshold s0 can be found from the global duality relation
[27], that usually gives s0 = 1.35÷ 1.75 GeV2.

Within the analytic approach the DV -function has been analyzed in [16]. The improved
studying has been done in [26]. These results are close to each other.

In complete analogy to vector case [26], we consider the non-strange axial-vector DA-
function. For the control we use a simple model for the function RA(s), that usually used
in the QCD sum rules [28], and get the model expression

Dhad
A (Q2) =

2π

g2
A

Q2 m2
A

(Q2 + m2
A)2

+

(
1 +

α
(0)
s

π

)
Q2

Q2 + s0

, (27)

which reproduces well the “experimental” curve Dexp
A (Q2) constructed by using experimental

data shown in Fig. 4 with the parameters: mA = 1230 MeV, g−2
A = 1.65, α

(0)
s = 0.4, and

s0 = 1.75 GeV2. Note that values of these parameters are close to the parameters that one
usually uses in the sum rules method.
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FIG. 6: Experimental and theoretical DA-functions for axial-vector channel.

In Fig. 5 we plot the DA-function obtained in the APT approach (solid curve) and the
experimental curve (dashed line) constructed by using the ALEPH data. The DA-function
turns out to be a smooth function without any traces of resonance structure and, therefore, is
useful to use in a theoretical analysis as the Euclidian characteristic of the inclusive process.
Fig. 5 demonstrates a good agreement of our result with the experimental curve for whole
interval of Q2. Note here that an use of any finite order of the operator product expansion
cannot adequately describe the D-function in the infrared region of low energy scale (see [16]
for details). The curve corresponding to model expression (27) coincides with the dashed line
and therefore in figure it is not shown.

6. Conclusions

The analytic approach proposed by Shirkov and Solovtsov modifies the perturbative expan-
sions such that the new approximations reflect basic principles of the theory, such as renor-
malization invariance, spectrality, and causality. Analytic perturbation theory, which was used
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here, gives a self-consistent description of both the spacelike and timelike regions. This method
was applied to describe some physical quantities and functions an experimental information for
which can be extracted from the τ lepton decay data.

We performed a comparative analysis of the advantages and disadvantages of different forms
of perturbative expansion both from the general standpoint and in the context of application
to the inclusive τ decay. We presented the arguments in favor of the APT, which not only
agrees with the general principles of the theory but also has a number of practical advantages.
In the analytic approach, the two methods for describing the inclusive τ lepton decay in terms
of timelike or spacelike variables are equivalent.

Within the APT, the dependence of the results on the choice of the renormalization prescrip-
tion is essentially reduced, and we can speak of the practical independence of the three-loop
expressions from the renormalization scheme. The calculations based on the APT thus consid-
erably reduce the theoretical uncertainty of the results. Therefore, using it as the perturbative
component increases the reliability of information about the QCD parameters obtained from
the experimental data known with high accuracy for the τ lepton decay.

We considered the Adler function corresponding to the non-strange vector and axial-vector
channels. These functions, defined in the Euclidean region, are smooth functions and represent
a convenient testing ground for theoretical methods. The conventional method of approximat-
ing these function as a sum of perturbative terms and power corrections cannot describe the
low energy scale region because both the logarithmic and power expansions diverge at small
momenta. We have shown that our approach allows us to describe well the experimental data
for τ decay in terms of DV/A-functions down to the lowest energy scale.
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