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The Monte-Carlo Simulation of Heavy-Ion Collisions
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We study the multiplicity distributions of charged particles in high energy heavy-ion col-
lision with the help of the Ginzburg-Landau model for first-order QGP→ hadron phase
transition and the Monte-Carlo simulation. Parameters of the model and the values of
scaling exponent are found.
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1. Introduction

It is well-known that high energy heavy-ion collision is the main way to study possible creation
of a hot new matter state, quark-gluon plasma (QGP) in laboratory. In the collisions, QGP might be
formed and the system will be cooling with expanding and undergo a phase transition from deconfined
QGP to confined hadrons. Since only the final particles in the collisions are observable experimentally
one can search for signals about the phase transition from only those particle.

The order of the phase transition is one of the basic thermodynamic characteristics. A phase
transition is said to be of first-order if there is at least one finite gap in the first derivatives of a suitable
thermodynamic potential. A transition is said to be of second-order if there is a power-like singularity
in at least one of the second derivatives of the potential.

As shown in [1-4] the Ginzburg-Landau (GL) model of phase transitions can be used for investiga-
tion of the QGP → hadrons phase transition in the heavy-ion collisions. The parameters of the model
have been found for both second-order [1, 2], and first-order [3,4] phase transitions and the scaled fac-
torial moments and a universal scaling exponent ν were calculated. It is suggested that the exponent ν

can be used as a helpful diagnostic tool to detect the formation of QGP. As shown [3] for the first-order
phase transitions, the value of scaling exponent ν depend on the values of the parameters of the GL
model. These parameters can be determined by fitting the experimental multiplicity distribution of
charged particles in heavy-ion collisions.

Monte Carlo simulations on intermittency without phase transition for pp collisions give results
different from theoretical predictions based on the GL model [5].

We study the difference between the scaling exponent ν calculated with the help of GL model of
QGP →hadrons phase transitions and that calculated from Monte-Carlo simulations. For Monte-Carlo
modeling we use the HIJING Monte-Carlo generator. The HIJING model [6, 7] is the most popular
Monte-Carlo program to study particle production in high energy pp, pA and AA collisions. It includes
soft and hard interactions, nuclear modification of structure functions, jet quenching, a true geometry
of nuclear collisions.
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2. Ginzburg-Landau model for QGP→ hadrons phase transition

The hadron multiplicity distribution for GL theory is given by the functional integral [1]

Pn = Z−1

∫
DψP 0

ne−F [ψ], (1)

were P0 is the initial distribution for pure state φ0 in which the potential F [ψ] has the minimum,

Z =
∫

Dψe−F [ψ], (2)

and

F [ψ] =
∫

dz
[
α|∂ψ(z)/∂z|2 + β|ψ(z)|2 + γ|ψ(z)|4 + δ|ψ(z)|6] (3)

stands for the Ginzburg-Landau free energy, where ψ is complex order parameter normalized on the
average multiplicity of hadrons in the volume V .

As shown in [1, 3], the simplest form of the initial distribution P 0
n is the Poissonian distribution

P 0
n =

1
n!

exp
{
−

∫

V

|ψ(z)|2dz

} 


∫

V

|ψ(z)|2dz




n

. (4)

Taking into account the probability density P 0
n we obtain expression for the hadron multiplicity distri-

bution

Pn = Z−1

∫
Dψ

1
n!




∫

V

|ψ(z)|2dz




n

exp
{
−

∫

V

|ψ(z)|2dz

}
e−F [ψ]. (5)

To make the functional integration in (5) is difficult task. We consider a simple case of uniform ψ

that is equivalent to setting α = 0 in (3). Then the functional integral can be given in the form

Pn = Z−1

∫ ∞

0
dx

(ax)ne−ax

n!
e−x3+bx2+cx, Z =

∫ ∞

0
dxe−x3+bx2+cx (6)

were x ∼ |ψ|2
We can determine the constants a, b, c by fitting the experimental data. Parameters of the GL

model for first order phase transitions at (Au + Au) collisions were determined in [8]. Result of fitting
the experimental data with parameters a = 72.82, b = 7.162, c = −11.82 are plotted on the Fig. 1.

The effective method to study the multiplicity fluctuations consists in examining dependence of
the normalized factorial moments Fq on the bin width δ in phase space z [5]

Fq =
〈n(n− 1) · · · (n− q + 1)〉

〈n〉q =
fq

f q
1

, (7)

where fq = 〈n(n − 1) · · · (n − q + 1)〉, n is the number of hadrons detected in δ in an event, and the
average is taken over all events. The multiplicity fluctuations can exhibit intermittency behavior which
is described by power-law behavior of Fq on δ

Fq ∝ δ−ϕq , (8)
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FIG. 1. Comparison of GL model at parameters a = 72.82, b = 7.162, c = −11.82 (dashed line) and experimental
data(solid line) for multiplicity distributions of charged particles for heavy-ion (Au + Au) collisions.

where ϕq is referred to as the intermittency index. Besides may use another possibility for the scaling
law

Fq ∝ F2
βq , (9)

which is found [1-4] to be valid for intermittent systems not possessing the behavior (8). Expression
(9) describes the relationship between Fq and F2, irrespectively of their own dependence on δ. If such
property exists, the exponent βq ∝ ln Fq

ln F2
should be approximately independent on δ.

From (6) and (7) we obtain

Fq = δq−1

∫∞
0 dx (ax)2q e−x3+bx2+c

∫∞
0 dx e−x3+bx2+cx

. (10)

The βq exponents can be fitted by

βq = (q − 1)ν . (11)

The value ν is calculated for parameters a = 72.82, b = 7.162, c = −11.82 of potential (3) and equals
to ν = 1.35± 0.02.

3. The Monte-Carlo simulation of the hight energy (Au + Au) collisions

Let is calculate the value of the scaling exponent ν with the help of the HIJING Monte-Carlo
generator. The method used to analyze the intermittent behaviour of charge particle production is the
study of scaled factorial moments Fq, described in terms of pseudo-rapidity η, where η is related to the
spatial emission angle θ by the relation

η = − ln(tg
θ

2
) . (12)

The phase-space interval ∆η is divided in M bins of width δη = ∆η/M . The scaled factorial
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moments are defined as

F q = N q−1




〈
N∑

i=1
ni(ni − 1)...(ni − q + 1)

〉

(〈
N∑

i=1
ni

〉)q


 (13)

where ni is the number of particles in the i-th bin, running from 1 to M, and < n > is the average
multiplicity in the whole ∆η interval. For a given order q in the pseudo-rapidity space, the Fq moments
are normalized over all events. The results of the Monte-Carlo simulation of the central Au + Au

collisions at
√

SNN = 130GeV are plotted on Fig.2−5. The value of the scaling exponent ν = 1.3822.

FIG. 2. The rapidity distribution pseudo-rapidity
distribution dn

dη of charge particles in the central
Au + Au collisions at

√
SNN = 130GeV

FIG. 3. The variation of ln Fq as a function of
− ln δη for q=2,3,4,5,6,7.

FIG. 4. ln Fq vs ln F2 for various value of q =
3,4,5,6,7

FIG. 5. ln βq vs ln(q − 1). Dots are determined
from Fig. 4; the solid line is a fit.

4. Conclusion

We have studied the multiplicity fluctuations as phenomenological manifestation of QGP→hadron
phase transition in the framework both of the GL model for the first-order phase transition and of the
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Monte-Carlo simulation by means of HIJING Mote-Carlo generator. We have fitted the multiplicity
distribution of charged particles of the (Au + Au) collisions by means of the GL model and found the
values of its parameters. We compare the values of the scaling exponents ν for both cases, it is shown
that the value of the ν for the Monte-Carlo simulation is different from that calculated with the help
of GL model.
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