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Spherically-symmetric static space-times with
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In the paper a general ”inverse” method for Einstein equation is developed. It
is based on algebraic decomposition of the Einstein tensor. The general family of
spherically-symmetric static space-times, filled by a static scalar field, was found by
this technique. It is shown that in the case of minimal coupling such space-times is
uniquely determined by one characteristic function.
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1. Introduction

Constantly much attention is drown to the problems of algebraic properties of the Riemann
tensor and its parts that is invariant under the full Lorentz group: tensors of Weil and Ricci
[1, §3.5]. Paradoxically it is not so widely known that analysis of algebraic structure and
decomposition of Ricci (or Einstein) tensor drives to complete exhaustive determination of
members of some space-time classes [2, 3].

This paper is devoted to demonstration of the technique to account Einstein equations by
their algebraic properties. We obtain the general solution, depending on an arbitrary func-
tion, for spherically-symmetric static (SSS) space-times, filled by a scalar field with arbitrary
physically meaningful Lagrangian.

2. Method of investigation

As it follows from the Einstein equations

Gµν = Rµν − 1

2
Rgµν =

8πG

c4
Tµν , (1)

the algebraic types of the energy-momentum tensor (EMT) Tµν and the Einstein tensor (ET)
Gµν must coincide, so we consequently find the structure of left and right parts of this tensor
equation for the concerned class of space-times and match it.

2.1. General form of scalar field EMT

We make use of metric EMT, which can be obtained from Lagrangian L [4, § 94] by vari-
ational derivation with respect to gµν . This choice is motivated by manifest symmetry of the

∗E-mail: i.siutsou@dragon.bas-net.by
†E-mail: lmt@dragon.bas-net.by

197



I. A. Siutosou and L. M. Tomilchik

obtained tensor, while all other techniques of EMT construction need some additional tricks
for the tensor symmetrization.

In the case of a minimally coupled scalar field (as well as for Yang-Mills fields), when there
is no explicit dependence of L on Γµ

νσ, metric EMT reduces to:

Tµν =
2√−g

∂
√−gL
∂gµν

= 2
∂L

∂gµν
− Lgµν (2)

Lagrangian density L is a scalar under the coordinate transformations, so it must be the
function of coordinate scalars. Furthermore, most physically relevant Lagrangians don’t incor-
porate multiple derivatives of the field variables (specific case of GR is not an exception because
second order derivatives forms a divergence, that result in disappearing of third derivatives from
Einstein equations). So we have very small set of scalars on which Lagrangian can depend.

For real scalar field φ(x) the only coordinate-invariant scalars of the type considered are φ2

and gµνφ,µφ,ν = gµνφ;µφ;ν , for charged one — φ∗φ and gµνφ∗,µφ,ν = gµνφ∗;µφ;ν (as usual semicolon
denotes covariant and comma denotes usual derivative).

Therefore we find the following general form of real scalar field Lagrangian

L = L(φ2, gµνφ,µφ,ν), (3)

and of charged scalar field one
L = L(φ∗φ, gµνφ∗,µφ,ν). (4)

These forms include both traditional Lagrangian L0 = 1
2
(gµνφ∗,µφ,ν − m2φ∗φ) and self-action

case L = L0 +V (φ), as well as Lagrangian with modified dynamic term L = 1
2
(f(φ)gµνφ∗,µφ,ν −

m2φ∗φ), which is considering now as candidates for dark matter and dark energy [5].
From above the metric EMT of charged scalar field is:

Tµν = 2L′(φ∗,µφ,ν)− gµνL, (5)

where L′ = ∂L/∂(gµνφ∗,µφ,ν). The charged scalar field being in fact the combination of two
independent (by coordinate transformation) real components φ1 = Re φ and φ2 = Im φ, in this
case the EMT can be represented as

Tµν = 2L′(φ1,µφ1,ν + φ2,µφ2,ν)− gµνL. (6)

Clearly the EMT consists of identity tensor gµν up to constant and two symmetric diad (or
affinors) [6, 7] with gradient base vectors, i.e. φi,µν ≡ φi,νµ. In index-free notation

T = 2L′(∇φ1 ⊗∇φ1 +∇φ2 ⊗∇φ2)− L. (7)

For a real scalar field instead of two diad we have only one.

2.2. Einstein tensor decomposition

All space-times of the concerned class have an interval, which can be written in isotropic
coordinates as follows [8, §23.2]

ds2 = eτ(r)dt2 − eρ(r)−τ(r)(dx2 + dy2 + dz2), (8)

r2 = x2 + y2 + z2, x = x1, y = x2, z = x3, c = 1,
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so the Einstein tensor (calculated by RGTC package v. 3.2.5) is

Gµν = 1
4




e2τ(r)−ρ(r)C(r) 0

0 B(r)δij + xixjA(r)


 , (9)

A(r) = −2r(ρ′/r)′−ρ′2+2τ ′2
r2 , B(r) = 2(rρ′)′+rτ ′2

r
, (10)

C(r) = 8
r
(τ ′ − ρ′)− (τ ′ − ρ′)2 + 4(τ ′′ − ρ′′), (11)

where each prime denotes differentiation with respect to r.
To hold equations (1) we must find decomposition of the Einstein tensor in the form close

to known decomposition of EMT (7):

G =
rankG∑

i=1

A(i) ⊗ A(i) + λI (12)

or in components

Gµ
ν =

rankG∑
i=1

Aµ
(i)A(i)ν + λgµ

ν . (13)

For certain λ the sum may consist of less than 4 summands since diads can disappear or merge
into multiple-identical tensor λI. For the former case matrix rank of G must be less than 4:
rankG < 4, or, equivalently, there is one or more zero eigenvalues of G. For the latter λ must
be eigenvalue of matrix ||Gµ

ν || and a multiple eigenvalue can lower the upper limit of the sum
by its order [9, theorems 2.9.4 and 2.4.3].

If the upper limit of the sum can be lowered to 2 than it is possible to generate the concerned
space-time by a charged scalar field. If this limit can be reduced to 1 than the space-time can
be attributed to some real scalar field. So the problem is reduced to the determination of
eigenvalues and eigenvectors of square (generally non-symmetric) 4× 4 matrix:

det ||Gµ
ν − λgµ

ν || = 0. (14)

Algebraic calculations by Mathematica 5.2 shows that the Einstein tensor has in general one
eigenvalue of order two

λI = λII = −B(r)
4

eτ(r)−ρ(r), (15)

Aµ
I = {0,−z, 0, x}, Aµ

II = {0,−y, x, 0}, (16)

and two eigenvalues of order one

λIII = −r2A(r) + B(r)

4
eτ(r)−ρ(r), Aµ

III = {0, x, y, z}, (17)

λIV =
C(r)

4
eτ(r)−ρ(r), Aµ

IV = {1, 0, 0, 0}, (18)

eigenvectors AI and AII being Killing vectors of spherical symmetry and λIII corresponding
to spherically-symmetric eigenvector field AIII . Hence, as expected for such type of the space-
time symmetry [1, § 5.1], the Einstein tensor belongs to subtype a) of type I [(11)11] by Petrov
classification [10, § 54].
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2.3. Space-time determination

Since we consider the time-independent case, then vectors ∇φ1,2 don’t have the time-
components (∇φ1,2)

0. So there is only one possibility: the time-time-component of Gµ
ν (i.

e. G0
0 = λIV ) must coincide with −L. If we further recall that there are no rotation-invariant

non-singular curl-free vector fields on the sphere (except the trivial zero one, see, for example,
[8, Box 23.3]), then we have to require that

λI = λII = λIV . (19)

In the opposite case either we cannot exclude a diad from G or after excision of radial diad
from Einstein tensor we arrive to the sum of two pure spherical-tangent base vectors of diads.

The case considered then reduces to B(r) + C(r) = 0, so

τ =
ρ

2
+ ln

r

r0

−
∫ (

e−ρ/2

r2

∫
eρ/2 dr

)
dr. (20)

The formula above gives us the most general form of spherically-symmetric static space-times
with arbitrary Lagrangian scalar fields in minimally coupled case. It should be noted that the
symmetry of space-time annihilates the difference between real and charged scalar field, so that
any SSS space-time, originated by a complex scalar field, can be generated by a real scalar field
only.

3. Ordinary Lagrangian with scalar field self-action

Now we investigate the case of generally accepted Lagrangian L = 1
2
gµνφ,µφ,ν + V (φ). Ein-

stein equations have the form of (λI = λII = λIV = λ)

8πG

c4
(φ,µφ,ν − gµνL) = λgµν + (λIII − λ)

AIII µAIII ν

AIII αAIII
α , (21)

so we can find consequently:

φ,µ = AIII µ

√
(λIII − λ)c4

8πG(AIII αAIII
α)

, (22)

and φ(r) by integration. Then the function φ(r) must be inverted to obtain r(φ) and finally by
known L(r) we can find V (φ). Obviously there are many obstacles on this way, but it will be
discussed elsewhere.

4. Conclusion

The family of SSS space-times, generated by a scalar field, depends on an arbitrary function
ρ(r), which uniquely determines both the space-time and Lagrangian. However Lagrangian
is obtained not in the explicit form, but in the form of functional equations. Solution of
the equations can be found in exceptional cases only, for example, in the case of ordinary
Lagrangians considered above. From the other side, this solution family can be interpreted also
as ideal fluid solutions, due to the same algebraic structure of EMT for an ideal fluid and a real
scalar field. Moreover, cosmological constant in Einstein equations is not a problem for this
method because it will be absorbed naturally into −gµνL term.
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In this paper we demonstrate a general method for account ”the inverse problems” in General
Relativity. This technique can be applied not only in such simple toy models but even for
more relevant astrophysical problems of dark matter distribution, as it will be shown in our
subsequent paper.

Authors thank participants of the Physics of Fundamental Interactions Laboratory seminar
for helpful discussions and fruitful remarks. We also acknowledge the creator of RGTC package
— S. Bonanos.
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