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Manifestation of tensor polarizabilities of the
deuteron in storage-ring experiments

Alexander J. Silenko∗

Institute of Nuclear Problems, Belarusian State University, Minsk 220080, Belarus

The tensor electric and magnetic polarizabilities of the deuteron give important
information about spin-dependent nuclear forces. If a resonant horizontal electric
field acts on a deuteron beam circulating into a storage ring, the tensor electric
polarizability stimulates the buildup of the vertical polarization of the deuteron
(the Baryshevsky effect). The tensor magnetic polarizability of the deuteron causes
the spin rotation with two frequencies and experiences beating. General formulas
describing these effects have been derived. The problem of the influence of tensor
polarizabilities on spin dynamics in a deuteron electric-dipole-moment experiment in
storage rings has been investigated. Doubling the resonant frequency used in this ex-
periment dramatically amplifies the Baryshevsky effect and provides the opportunity
to make high-precision measurements of the deuteron’s tensor electric polarizability.
The tensor magnetic polarizability of the deuteron can be measured with the initially
tensor polarized beam that can acquire a final horizontal vector polarization of order
of 1%.
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1. Introduction

Electric and magnetic polarizabilities are important properties of deuteron and other nuclei.
Tensor electric and magnetic polarizabilities are defined by spin interactions of nucleons. Mea-
surement of these quantities gives an important information about an interaction between spins
of nucleons and provides a good possibility to examine the theory of spin-dependent nuclear
forces.

The methods of determination of these important electromagnetic properties of deuteron
have been proposed by V. Baryshevsky at al. [1–3]. If an electric field acts on a deuteron beam
circulating into a storage ring, the presence of the tensor electric polarizability leads to the
appearance of an interaction quadratic in spin. When the electric field in the particle’s rest
frame oscillates at the resonant frequency, the effect similar to the nuclear magnetic resonance
takes place. This effect stimulates the buildup of the vertical polarization (BVP) of deuteron
beam [1–3]. Another effect defined by the tensor magnetic polarizability of deuteron consists
in the spin rotation in the horizontal plane at two frequencies instead of expected rotation at
the g−2 frequency [2, 3]. In Refs. [1–3], the approach based on equations defining dynamics
of polarization vector and polarization tensor has been used. To check obtained results and
develop a more general theory, we follow the quite different method of spin amplitudes (see
Refs. [4, 5]) which is partially changed. We derive general formulae describing the BVP caused
by the tensor electric polarizability of deuteron in storage rings (the Baryshevsky effect). We
propose to use the initially tensor polarized deuteron beam that final vector polarization in the
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horizontal plane conditioned by the tensor magnetic polarizability can be measurable.

2. Hamiltonian approach in the method of spin amplitudes

The method of spin amplitudes uses quantum mechanics formalism to more easily describe
spin dynamics (see Refs. [4, 5]). Vector and tensor polarization of particles/nuclei with spin
S ≥ 1 are specified by the polarization vector and the polarization tensor Pij which are given
by [6]

Pi =
< Si >

S
, Pij =

3 < SiSj + SjSi > −2S(S + 1)δij

2S(2S − 1)
, i, j = x, y, z, (1)

where Si are corresponding spin matrices and S is the spin quantum number. The polarization
tensor satisfies the conditions Pij = Pji and Pxx +Pyy +Pzz = 1 and therefore has five indepen-
dent components. Additional tensors composed of products of three or more spin matrices are
needed only for the exhaustive description of polarization of particles/nuclei with spin S ≥ 3/2.

The spin matrices for spin-1 particles have the form

Sx = 1√
2




0 1 0
1 0 1
0 1 0


 , Sy = i√

2




0 −1 0
1 0 −1
0 1 0


 , Sz =




1 0 0
0 0 0
0 0 −1


 . (2)

The nontrivial spin dynamics predicted in Refs. [1–3] and conditioned by the tensor electric
and magnetic polarizabilities of the deuteron is a good example of importance of spin tensor
interactions in the physics of polarized beams in storage rings. Tensor interactions of deuteron
can also be described with the method of spin amplitudes. In this case, three-component spinors
and 3×3 matrices should be used. The method of spin amplitudes is mathematically advanta-
geous because transporting the three-component spinor is much simpler than transporting the
three-dimensional polarization vector P and five independent components of the polarization
tensor Pij together.

When the deuteron’s spin projection onto the direction defined by the spherical angles θ, ψ
is equal to unit (λ = 1), the components of the polarization vector and the polarization tensor
are given by (see, e.g., Ref. [7])

P =




sin θ cos ψ
sin θ sin ψ

cos θ


 , Pij =

3

2




sin2 θ cos2 ψ − 1
3

sin2 θ sin ψ cos ψ sin θ cos θ cos ψ
sin2 θ sin ψ cos ψ sin2 θ sin2 ψ − 1

3
sin θ cos θ sin ψ

sin θ cos θ cos ψ sin θ cos θ sin ψ cos2 θ − 1
3


 . (3)

When λ = 0,

P =




0
0
0


 , Pij = −3




sin2 θ cos2 ψ − 1
3

sin2 θ sin ψ cos ψ sin θ cos θ cos ψ
sin2 θ sin ψ cos ψ sin2 θ sin2 ψ − 1

3
sin θ cos θ sin ψ

sin θ cos θ cos ψ sin θ cos θ sin ψ cos2 θ − 1
3


 . (4)

We follow the traditional quantum mechanical approach perfectly expounded by R. Feynman
[8] and use the matrix Hamilton equation and the matrix Hamiltonian H for determining an
evolution of the spin wave function:

idΨ
dt

= HΨ, Ψ =




C1(t)
C0(t)
C−1(t)


 , (5)
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where H is 3× 3 matrix, Ψ is the three-component spin wave function (spinor), Hij = H∗
ji and

i, j = 1, 0,−1.
A determination of spin dynamics can be divided into several stages, namely i) a solution

of Hamilton equation (5) and a determination of eigenvalues and eigenvectors of the Hamilton
matrix H; ii) a derivation of spin wave function consisting in a solution of a set of three linear
algebraic equations; iii) a calculation of time evolution of polarization vector and polarization
tensor.

3. Hamilton operator in a cylindrical coordinate system

The spin dynamics can be analytically calculated when a storage ring is either circular or
divided into circular sectors by empty spaces. In this case, the use of cylindrical coordinates
can be very successful. Equation of spin motion in storage rings in a cylindrical coordinate
system has the form [9]

dS
dt

= ωa × S, ωa = − e
m

{
aB − aγ

γ+1
β(β ·B) +

(
1

γ2−1
− a

)
(β × E)

+ 1
γ

[
B‖ − 1

β2 (β × E)‖
]

+ η
2

(
E − γ

γ+1
β(β · E) + β×B

)}
,

(6)

where a = (g−2)/2, g = 2µm/(eS), η = 2dm/(eS), and d is the electric dipole moment (EDM).
The sign ‖ means a horizontal projection for any vector. We do not consider effects caused by
perturbations of particle trajectory investigated in Ref. [9]. The equation of spin motion in the
rotating frame coincides with that in the cylindrical coordinate system because the horizontal
axis of this system rotates at the instantaneous angular frequency of orbital revolution.

The Hamiltonian in the rotating frame has the form

H = H0 + S · ωa, (7)

where ωa is defined by Eq. (6).
The particle in the rotating frame is localized and ideally is in rest. Therefore, we can

direct the x- and y-axes in this frame along the radial and longitudinal axes, respectively. This
procedure is commonly used (see Refs. [4–6]) and results in the direct substitution of spin
matrices (2) for Sρ and Sφ:

Sρ = Sx = 1√
2




0 1 0
1 0 1
0 1 0


 , Sφ = Sy = i√

2




0 −1 0
1 0 −1
0 1 0


 . (8)

The matrix Sz remains unchanged.

4. Corrections to the Hamilton operator for tensor polarizabilities
of the deuteron

Corrections to the Hamilton operator for deuteron polarizabilities contain scalar and tensor
parts. The scalar part is spin-independent and can be disregarded.

The interaction Hamiltonian depending on the electric and magnetic polarizabilities is given
by

V = Ve + Vm = −1
2
αikE

′
iE

′
k − 1

2
βikB

′
iB

′
k, (9)

where αik and βik are the tensors of electric and magnetic polarizabilities, E ′ and B′ are fields
in the particle’s rest frame, i.e., in the rotating frame. In this frame, all quantities are marked
by primes.
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The correction to the Hamilton operator in the rotating frame is equal to

V = − 1
2γ

(d′ · E ′ + m′ ·B′) = −αT

γ
(S · E ′)2 − βT

γ
(S ·B′)2, (10)

where αT and βT are the tensor electric and magnetic polarizabilities, respectively. The mod-
ulation of normalized velocity can be given by (see Ref. [10])

β =
p√

m2 + p2
= β0 + ∆β0 · cos (ωt + ϕ)eφ, β0 =

p0√
m2 + p2

0

, γ0 =

√
m2 + p2

0

m
. (11)

Owing to this modulation, the radial electric field in the particle’s rest frame has the oscillatory
part. The effect of the modulation on the BVP is described by the last term in Eq. (6)
proportional to β×B.

If we retain only first-order terms in ∆β0, the particle momentum is defined by the equation

p =
mβ√
1− β2

= p0 + γ3
0m∆β0 · cos (ωt + ϕ)eφ. (12)

Eq. (10) can be transformed to the form

V = −αT

γ
(βγBzSρ + EφSφ)

2 − βT γB2
zS

2
z . (13)

The term proportional to magnetic field Bz is much bigger for the deuteron. To simplify the
calculation, we neglect the effect of the longitudinal electric field and use the approximation

V = −γB2
z (αT β2S2

ρ + βT S2
z ). (14)

The quantities γ and β2γ can be expanded in series of ∆β0:

γ = γ0 + β0γ
3
0 ·∆β0 cos (ωt + ϕ) + 1

4
(1 + 3β2

0γ
2
0)γ

3
0(∆β0)

2 {1 + cos [2(ωt + ϕ)]} ,
β2γ = β2

0γ0 + (2 + β2
0γ

2
0)β0γ0 ·∆β0 cos (ωt + ϕ)

+1
4
(2 + 5β2

0γ
2
0 + 3β4

0γ
4
0)γ0(∆β0)

2 {1 + cos [2(ωt + ϕ)]} .
(15)

Eqs. (14),(15) define the corrections to the Hamilton operator for the tensor polarizabilities
of deuteron.

5. Solution of matrix Hamilton equation

Matrix Hamiltonian (5) takes the form

H =




E0 + ω0 +A+ B 0 A
0 E0 + 2A 0
A 0 E0 − ω0 +A+ B


 , (16)

where

A = a0 + a1 cos (ωt + ϕ) + a2 cos [2(ωt + ϕ)], B = b0 + b1 cos (ωt + ϕ) + b2 cos [2(ωt + ϕ)],
a0 = −1

2
αT B2

zγ0

[
β2

0 + 1
4
(2 + 5β2

0γ
2
0 + 3β4

0γ
4
0)(∆β0)

2
]
, a1 = −1

2
αT B2

z (2 + β2
0γ

2
0)β0γ0 ·∆β0,

a2 = −1
8
αT B2

z (2 + 5β2
0γ

2
0 + 3β4

0γ
4
0)γ0(∆β0)

2, b0 = −βT B2
zγ0

[
1 + 1

4
(1 + 3β2

0γ
2
0)γ

2
0(∆β0)

2
]
,

b1 = −βT B2
zβ0γ

3
0 ·∆β0, b2 = −1

4
βT B2

z (1 + 3β2
0γ

2
0)γ

3
0(∆β0)

2,
(17)

and E0 is the zero energy level. In Hamiltonian (16), the EDM effect is not taken into account.
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We consider the spin dynamics near a resonance. Zero component of spin is not mixed with
other components. The solution of Eq. (16) has the form

D1(t) =
[
cos (ω′t)− iω0−ω

ω′ sin (ω′t)
]
D1(0)− i E

ω′ sin (ω′t)D−1(0),
D−1(t) = −iE

∗
ω′ sin (ω′t)D1(0) +

[
cos (ω′t) + iω0−ω

ω′ sin (ω′t)
]
D−1(0),

ω′ =
√

(ω0 − ω)2 + EE∗, E = a2

2
exp (−2iϕ).

The initial spin amplitudes take the form

C1(t) = exp
{−i

[
(E0 + ω + a0 + b0)t + a1+b1

ω
f(t) + a2+b2

2ω
g(t)

]}
D1(t), C1(0) = D1(0),

C−1(t) = exp
{−i

[
(E0 − ω + a0 + b0)t + a1+b1

ω
f(t) + a2+b2

2ω
g(t)

]}
D−1(t), C−1(0) = D−1(0).

(18)
The resonance at the doubled frequency ω ≈ 2ω0 can be investigated in a similar way. The

evolution of the spin amplitudes is given by

C1(t) = exp
{−i

[
(E0 + ω

2
+ a0 + b0)t + a1+b1

ω
f(t) + a2+b2

2ω
g(t)

]}
D1(t), C1(0) = D1(0),

C0(t) = exp
{−i

[
(E0 + 2a0)t + 2a1

ω
f(t) + a2

ω
g(t)

]}
C0(0),

C−1(t) = exp
{−i

[
(E0 − ω

2
+ a0 + b0)t + a1+b1

ω
f(t) + a2+b2

2ω
g(t)

]}
D−1(t), C−1(0) = D−1(0),

(19)
where

D1(t) =
(
cos ω′′t

2
− i2ω0−ω

ω′′ sin ω′′t
2

)
D1(0)− i2E ′

ω′′ sin ω′′t
2

D−1(0),

D−1(t) = −i2E ′∗
ω′′ sin ω′′t

2
D1(0) +

(
cos ω′′t

2
+ i2ω0−ω

ω′′ sin ω′′t
2

)
D−1(0),

E ′ = a1

2
exp (−iϕ), ω′′ =

√
(2ω0 − ω)2 + 4E ′E ′∗.

6. Spin dynamics caused by tensor electric polarizability of the
deuteron

For spin-1 particles, three components of polarization vector and related components of
polarization tensor are

Pρ = 1√
2
(C1C

∗
0 + C∗

1C0 + C0C
∗
−1 + C∗

0C−1), Pφ = i√
2
(C1C

∗
0 − C∗

1C0 + C0C
∗
−1 − C∗

0C−1),

Pz = (C1C
∗
1 − C−1C

∗
−1), Pρρ = 3

2
(C1C

∗
−1 + C∗

1C−1 + C0C
∗
0)− 1

2
,

Pφφ = −3
2
(C1C

∗
−1 + C∗

1C−1 − C0C
∗
0)− 1

2
, Pzz = C1C

∗
1 − 2C0C

∗
0 + C−1C

∗
−1,

Pρφ = i3
2
(C1C

∗
−1 − C∗

1C−1).

(20)

The horizontal components, Pρ and Pφ, do not give necessary information about the inves-
tigated effect because they undergo fast oscillations caused by the g−2 spin precession. The
change of the vertical component, Pz, is a relatively slow process. When ω ≈ ω0, the evolution
of the vertical component of polarization vector is expressed by

Pz(t) =
[
1− E2

0

ω′2 (1− cos (2ω′t))
]
Pz(0)

+2E0
3ω′

{
1
2
[Pρρ(0)− Pφφ(0)]

[
ω0−ω

ω′ cos (2ϕ)
(
1− cos (2ω′t)

)
− sin (2ϕ) sin (2ω′t)

]

+Pρφ(0)
[

ω0−ω
ω′ sin (2ϕ)

(
1− cos (2ω′t)

)
+ cos (2ϕ) sin (2ω′t)

]}
, E0 = a2

2
,

(21)

where the quantities a2 and ω′ are defined by Eqs. (17) and (18), respectively.
For the resonance at the doubled frequency ω≈2ω0, the evolution of z component of polar-

ization vector is given by

Pz(t) =
[
1− 4E ′20

ω′′2 (1− cos (ω′′t))
]
Pz(0) +

2E ′0
3ω′′

{
[Pρρ(0)− Pφφ(0)]

[
2ω0−ω

ω′′ cos (ϕ)
(
1− cos (ω′′t)

)

− sin (ϕ) sin (ω′′t)
]

+ 2Pρφ(0)
[

2ω0−ω
ω′′ sin (ϕ)

(
1− cos (ω′′t)

)
+ cos (ϕ) sin (ω′′t)

]}
, E ′0 = a1

2
,

(22)
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where the quantities a1 and ω′′ are defined by Eqs. (17) and (20), respectively.
Eqs. (17),(21), and (22) show that resonance frequency doubling leads to a dramatic ampli-

fication of the Baryshevsky effect. In this case, the EDM effect becomes nonresonant and does
not influence the spin dynamics.

7. Measurement of tensor electric polarizability of the deuteron
in storage-ring experiments

To discover the Baryshevsky effect, it is necessary to stimulate the BVP conditioned by the
tensor electric polarizability of deuteron and to avoid a similar effect caused by the magnetic
moment. The measurement of the tensor electric polarizability of deuteron in a storage ring
needs the field configuration similar to that proposed for the deuteron EDM experiment [10].
However, the resonance frequency should be doubled (ω ≈ 2ω0). Resonance frequency doubling
cannot be implemented in the designed EDM ring. In this ring, the eigenfrequency of free
synchrotron oscillations must be chosen close to the g−2 frequency, ωa, and the resonance
effect is created by the beatings between two rf frequencies [10]. Therefore, the measurement of
the tensor electric polarizability of deuteron needs another ring or at least rf cavities different
from that developed for the deuteron EDM experiment.

The EDM-dependent evolution of deuteron spin in the EDM experiment has been calculated
in detail in Ref. [11]. The dynamics of the vertical component of polarization vector is given
by

P
(EDM)
z (t) =

E ′′0
Ω′

{
ω0−ω

Ω′ cos (ψ − ϕ) [1− cos (Ω′t)] + sin (ψ − ϕ) sin (Ω′t)
}

, (23)

where

Ω′ = |Ω′| =
√

(ω0 − ω)2 + E ′′0 2, E ′′0 = −1
2
dBz ·∆β0

(
1 +

aγ2
0ω

ω0

)
, (24)

and ψ defines the direction of spin at zero time. The initial polarization is supposed to be
horizontal. When Ω′t ¿ 1,

P
(EDM)
z = E ′′0 t sin (ψ − ϕ) = −1

2
dBz∆β0

(
1 +

aγ2
0ω

ω0

)
t sin (ψ − ϕ). (25)

We can evaluate the expected sensitivity in the measurement of the tensor electric polar-
izability of deuteron. The sensitivity to the EDM of d = 1 × 10−29 e·cm corresponds to the
accuracy of δαT = 1.2× 10−43 cm3 when ω ≈ 2ω0 and Eqs. (22),(23)–(24) are used. This esti-
mate is based on the values of γ0 = 1.28, β0 = 0.625, ∆v0 = 3.5× 106 m/s, and Bz = 3 T [10].
There are three independent theoretical predictions for the value of tensor electric polarizability
of deuteron, namely αT = −6.2 × 10−41 cm3 [12], −6.8 × 10−41 cm3 [13], and 3.2 × 10−41 cm3

[14]. Two first values are very close to each other but they do not agree with the last result.
In all probability, the best sensitivity in the measurement of αT can be achieved with the use

of a tensor polarized deuteron beam. The initial preferential direction of deuteron polarization
should be horizontal. When the vector polarization of such a beam is zero, any spin rotation
does not occur. Therefore, there are no related systematical errors caused by the radial magnetic
field and some other reasons. In the general case, such systematical errors are proportional to a
residual vector polarization of the beam. In this case, the preliminary estimate of experimental
accuracy is δαT ∼ 10−45 ÷ 10−44 cm3.
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8. Tensor magnetic polarizability of the deuteron in the EDM
experiment

The spin dynamics in the planned deuteron EDM experiment is affected by the tensor
electric and magnetic polarizabilities of the deuteron. Baryshevsky et al. [2, 3] have shown
that the tensor magnetic polarizability causes the spin rotation with two frequencies, ω1 and ω2,
instead of ω0 and therefore experiences beating with the frequency ω1−ω2 ≈ βT B2. This effect
makes it possible to measure the tensor magnetic polarizability of the deuteron in storage ring
experiments. In this section, an influence of the tensor magnetic polarizability of the deuteron
on the spin motion in the EDM experiment is calculated. We take into consideration the EDM
and the tensor magnetic polarizability of the deuteron. In this case, the matrix Hamiltonian
takes the form

H =




E0 + ω0 + B E 0
E∗ E0 E
0 E∗ E0 − ω0 + B


 , (26)

where
B = b0 + b1 cos (ωt + ϕ) + b2 cos [2(ωt + ϕ)], b0 = −βT γ0B

2,

E = E0 exp [−i(ωt + ϕ)], E0 =
E ′′0√

2
.

(27)

E ′′0 is given by Eq. (24).
If the deuteron beam is vector-polarized and the direction of its polarization is defined by

the spherical angles θ and ψ, the evolution of three components of polarization vector is given
by

Pρ(t) = sin θ cos (ω0t + ψ) cos (b0t)− sin θ cos θ sin (ω0t + ψ) sin (b0t)

+
√

2[Pzz(0) + Pz(0)] E0
∆ω+b0

sin
(

ω0+ω+b0
2

t + ϕ
)
sin ∆ω+b0

2
t

−√2[Pzz(0)− Pz(0)] E0
∆ω−b0

sin
(

ω0+ω−b0
2

t + ϕ
)
sin ∆ω−b0

2
t

+ 1√
2
sin2 θ

[
E0

∆ω−b0
sin

(
3ω0−ω+b0

2
t + 2ψ − ϕ

)
sin ∆ω−b0

2
t

− E0
∆ω+b0

sin
(

3ω0−ω−b0
2

t + 2ψ − ϕ
)
sin ∆ω+b0

2
t

]
,

Pφ(t) = sin θ sin (ω0t + ψ) cos (b0t) + sin θ cos θ cos (ω0t + ψ) sin (b0t)

−√2[Pzz(0) + Pz(0)] E0
∆ω+b0

cos
(

ω0+ω+b0
2

t + ϕ
)
sin ∆ω+b0

2
t

+
√

2[Pzz(0)− Pz(0)] E0
∆ω−b0

cos
(

ω0+ω−b0
2

t + ϕ
)
sin ∆ω−b0

2
t

+ 1√
2
sin2 θ

[
E0

∆ω+b0
sin

(
3ω0−ω−b0

2
t + 2ψ − ϕ

)
sin ∆ω+b0

2
t

− E0
∆ω−b0

cos
(

3ω0−ω+b0
2

t + 2ψ − ϕ
)
sin ∆ω−b0

2
t

]
,

Pz(t) = Pz(0) +
√

2 sin θ(1 + cos θ) E0
∆ω+b0

sin
(

∆ω+b0
2

t + ψ − ϕ
)
sin ∆ω+b0

2
t

+
√

2 sin θ(1− cos θ) E0
∆ω−b0

sin
(

∆ω−b0
2

t + ψ − ϕ
)
sin ∆ω−b0

2
t,

where ∆ω = ω0 − ω and the initial vertical polarization is defined by

Pz(0) = cos θ, Pzz(0) = 1
2
(3 cos2 θ − 1), Pzz(0)± Pz(0) = −1

2
(1± cos θ)(1∓ 3 cos θ). (28)

The formula for Pz(t) agrees with Eq. (23).
These equations confirm the conclusion [2, 3] that the tensor magnetic polarizability of

the deuteron causes the spin rotation with two frequencies. This effect is rather small but
not negligible. According to Refs. [2, 3], the vertical component of the polarization vector
experiences the oscillation with two frequencies. Since b0 ∼ 10−5 s−1 and the expected duration
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of measurement t ∼ 103 s [10], b0t ∼ 10−2. Therefore, the effect of the tensor magnetic
polarizability on the spin rotation in the horizontal plane can be observed.

We propose to use the tensor-polarized deuteron beam for measuring the tensor magnetic
polarizability of the deuteron. If the initial vector polarization of such a beam in zero, the
interaction of the magnetic moment of the deuteron cannot lead to the appearance of any
vector polarization. Therefore, nonzero vector polarization of the beam can be conditioned
by nothing but the tensor interactions. When the projection of the deuteron spin onto the
direction defined by the spherical angles θ and ψ is fixed and is equal to zero, the polarization
vector is given by

Pρ(t) = 2 sin θ cos θ sin (ω0t + ψ) sin (b0t) +
√

2Pzz(0) E0
∆ω+b0

sin
(

ω0+ω+b0
2

t + ϕ
)
sin ∆ω+b0

2
t

−√2Pzz(0) E0
∆ω−b0

sin
(

ω0+ω−b0
2

t + ϕ
)
sin ∆ω−b0

2
t

+
√

2 sin2 θ

[
E0

∆ω+b0
sin

(
3ω0−ω−b0

2
t + 2ψ − ϕ

)
sin ∆ω+b0

2
t

− E0
∆ω−b0

sin
(

3ω0−ω+b0
2

t + 2ψ − ϕ
)
sin ∆ω−b0

2
t

]
,

Pφ(t) = −2 sin θ cos θ cos (ω0t + ψ) sin (b0t)−
√

2Pzz(0) E0
∆ω+b0

cos
(

ω0+ω+b0
2

t + ϕ
)
sin ∆ω+b0

2
t

+
√

2Pzz(0) E0
∆ω−b0

cos
(

ω0+ω−b0
2

t + ϕ
)
sin ∆ω−b0

2
t

+
√

2 sin2 θ

[
E0

∆ω−b0
cos

(
3ω0−ω+b0

2
t + 2ψ − ϕ

)
sin ∆ω−b0

2
t

− E0
∆ω+b0

cos
(

3ω0−ω−b0
2

t + 2ψ − ϕ
)
sin ∆ω+b0

2
t

]
,

Pz(t) = −2
√

2 sin θ cos θ E0
∆ω+b0

sin
(

∆ω+b0
2

t + ψ − ϕ
)
sin ∆ω+b0

2
t

+2
√

2 sin θ cos θ E0
∆ω−b0

sin
(

∆ω−b0
2

t + ψ − ϕ
)
sin ∆ω−b0

2
t,

Pρ(0) = Pφ(0) = Pz(0) = 0, Pzz(0) = −3 cos2 θ + 1.

When |∆ω|t ¿ 1, |b0|t ¿ 1, Eq. (29) takes the form

Pρ(t) = 2b0t sin θ cos θ sin (ω0t + ψ) + 1√
2
Pzz(0)E0b0t

2 cos (ω0t + ϕ)

− 1√
2
E0b0t

2 sin2 θ cos (ω0t + 2ψ − ϕ),

Pφ(t) = −2b0t sin θ cos θ cos (ω0t + ψ) + 1√
2
Pzz(0)E0b0t

2 sin (ω0t + ϕ)

− 1√
2
E0b0t

2 sin2 θ sin (ω0t + 2ψ − ϕ), Pz(t) = 0.

Eq. (29) shows the possibility of measurement of the tensor magnetic polarizability of the
deuteron in storage ring experiments because the final vector polarization of the beam can be
of order of 1%.

9. Differentiation of effects of EDM and tensor electric polariz-
ability in the deuteron EDM experiment

The Baryshevsky effect caused by the tensor electric polarizability of deuteron should be
taken into account when performing the deuteron EDM experiment [1–3]. This effect results
in the similar BVP and can imitate the presence of the deuteron EDM of order of d ∼ 10−29

e·cm. An attainment of such an accuracy is planned [10].
The values of αT found in Refs. [12–14] correspond to the false EDM moments of |d| =

3 × 10−29, 3 × 10−29, and 2 × 10−29 e·cm, respectively. However, the EDM and Baryshevsky
effects have different symmetries, and the use of clockwise and counterclockwise beams makes it
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possible to cancel the effect of the tensor electric polarizability in the framework of the deuteron
EDM experiment. Nevertheless, the existence of this effect should be taken into account.

One can also use other possibilities of separating the EDM and Baryshevsky effects listed
below.

1) The spin dynamics caused by first-order interactions (including the EDM effect) and
second-order interactions (including the Baryshevsky effect) is defined by the operator equations
of spin motion dS

dt
= AΩ×S and dSi

dt
= βijkSjSk, respectively. Therefore, the EDM effect reverses

the sign when the beam polarization is reversed while the sign of the Baryshevsky effect remains
unchanged.

2) Since both the EDM and Baryshevsky effects depend on the difference ψ − ϕ, reversing
the beam polarization (ψ → ψ + π) is equivalent to the transition to the opposite phase
(ϕ → ϕ + π). Naturally, such a transition is technically simpler. If two measurements of the
BVP give the values Pz1 and Pz2, the EDM and Baryshevsky effects are characterized by the
values (Pz1 − Pz2)/2 and (Pz1 + Pz2)/2, respectively. This is valid for paragraphs 1) and 2).

3) In the particle rest frame, the EDM and Baryshevsky effects are linear and quadratic in
the electric field, respectively. The experimental dependence can be determined with changing
the amplitude of the resonator field.

4) The frequency of BVP caused by the Baryshevsky effect is approximately twice as large
as that conditioned by the EDM.

5) The use of tensor polarized deuteron beam even at the angular frequency ω ≈ ω0 cancels
the EDM effect and main systematical errors.

V. Baryshevsky has found [3] that that the derivative of the tensor polarization component
Pzz does not depend on the tensor electric polarizability and is proportional to the EDM only.
When the vector polarization corresponds to cos2 θ = 1

3
, Pzz(0) = 0. In this case, a growth of

this component can be easier observed [3]. Our calculation confirms this result. It follows from
Eqs. (18),(18),(20) that the tensor electric polarizability does not affect Pzz. Therefore, the
evolution of Pzz would be the same if the tensor electric polarizability were equal to zero. Since
the evolution of polarization of vector-polarized deuteron beam depends on the EDM rather
than on the tensor magnetic polarizability, the change of Pzz is proportional to the EDM.

10. Summary

The calculations show that the effects found in Refs. [1–3] can be observed in storage rings.
All predictions made in these works have been confirmed and detailed calculations of spin
dynamics have been carried out. The method based on the use of Hamiltonian approach and
spin wave functions is very convenient for such calculations. Calculated formulae agree with
the previously obtained results [1–3].

Performing measurements with the use of resonance ω ≈ 2ω0 and the initial tensor-polarized
beam allows to measure the deuteron’s tensor electric polarizability with the accuracy of
10−45 ÷ 10−44 cm3 (10−6 ÷ 10−5 fm3). The problem of influence of tensor electric and mag-
netic polarizabilities on spin dynamics in the storage-ring deuteron EDM experiment has been
investigated. The possibilities to differentiate the EDM and Baryshevsky effects have been
found. The tensor magnetic polarizability of the deuteron can be measured with the initially
tensor polarized beam that can acquire a final horizontal vector polarization of order of 1%. In
this case, any resonant field is not used.
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