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On statistical methods of structure function
extraction

S. N. Sevbitov∗ and T. V. Shishkina†

Belarusian State University
220030, Belarus, Minsk, Nezavisimosti av. 4

Several methods of statistical analysis are proposed and analyzed in application for
a specific task – extraction of the structure functions from the cross sections of deep
inelastic interactions of any type. We formulate the method based on the orthogonal
weight ] functions and on an optimization procedure of errors minimization as well as
methods underlying common χ2 minimization. Effectiveness of these methods usage
is estimated by the statistical parameters such as bias, extraction variance etc., for
sample deep inelastic scattering data set.
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Introduction

Precise extraction and analysis of the nucleon’s structure functions from the deep inelastic
scattering experiments plays great role in current understanding of the particles structure and
development of quantum field theory. Deep inelastic scattering (DIS) processes or probing in-
ternal structure of nucleon by a pointlike particle at small distances and high energies provide
such information about nucleon structure. As soon as experimental facilities to investigate po-
larized particle interactions have appeared, interest moved mainly to the study of the polarized
DIS. Phenomenologically obtained cross sections and asymmetries contain such information as
polarized structure functions g1 and g2 (or sometimes called g5 or g6) or partonic composition
of nucleon’s spin. To extract these data precisely it’s necessary to count on radiative correc-
tions and background effects for obtaining pure cross sections (so-called unfolding of radiative
smearing, see e.g. ) for further extraction of the structure functions. This paper is devoted to
some statistical aspects in application to extraction of the structure functions from the Born
interaction parameters.

The cross sections for neutral and charged current deep inelastic scattering both on unpo-
larized and polarized nucleon targets can be written in the following “separable” form (see e.g.
[1]):

d2σ/dxdy ≡ σxy = σ0

∑

k

Yk(y, x, Q2)Wk(x,Q2),

where Yk(y, x, Q2) are known functions, which in the Bjorken limit depend on y only and they
are y-polynomial. Wk(x,Q2) are hadronic structure functions. For massless leptons the cross
section is parameterized by a set of three unpolarized structure functions

F1(x,Q2), F2(x,Q2), F3(x,Q2)

as well as five polarized functions

g1(x, Q2), g2(x,Q2), g3(x,Q2), g3(x,Q2), g3(x,Q2), g3(x, Q2).

∗E-mail: serg sevbitov@tut.by
†E-mail: shishkina@bsu.by

160



On statistical methods of structure function extraction

One can derive desired (un)polarized structure functions operating directly with asymme-
tries, nevertheless, as asymmetries and corresponding cross sections are being related with each
other, we propose here methods operating only with the cross sections. Methods presented
below can be easily generalized for more specific cross section expressions, e.g. extended phe-
nomenological models with larger number of the structure functions or more complicated form
of the Yk functions.

The structure of the given article is the following: after initial experimental (statistical) data
being introduced we sketch orthogonal weight function method and its optimization technique
for the simplest case of the cross section that includes two structure functions f(x) and g(x)
for methodological purpose (in the case of polarized particles DIS one can get such expressions
by subtracting corresponding cross sections with opposite spin directions). Then we offer χ2

minimization methods adapted to a given task. Last section compares mentioned methods by
means of numerical estimation.

Initial experimental data

Consider normalized on a σ0 the cross section of the simplest form

σxy = Y+(y)f(x) + Y−(y)g(x), (1)

where Y± reads
Y± = 1± (1− y)2. (2)

Let’s suppose that we know values of cross sections σxy (in other words – a counted number of
events in the bin of a histogram) and its errors ∆σxy at some x, y-lattice (grid) of experimental
kinematical points. Defined grid can be either regular or irregular, so we will distinguish the
following cases:

1. Regular (rectangular) x,y-grid

M = X⊗Y, X = x1, . . . , xm; Y = y1, . . . , yn.

2. Regular (rectangular) x,Q2-grid

M̃ = X⊗Q2, X = x1, . . . , xm; Q2 = Q2
1, . . . , Q

2
n.

3. Non-regular (irregular) x,y- and x,Q2-grid – arbitrary set of points (bins).

Although, it’s not crucial here for the lattice to be regular (besides experimenters mostly
gather events on irregular set of bins), but at first we implement methods for regular grids and
then propose schemes to generalize and apply them for an irregular set of points (bins) using
simple interpolation considerations.

Orthogonal weight function method.

Lets begin with the rectangular x, y-grid M and take the parameters a± of some preliminary
chosen weight function ω(y; a) in such a way that the following orthogonality condition fulfils:

∑
y

ω(y; a±)Y± = 0,

whereas the following requirement holds:
∑

y

ω(y; a∓)Y± 6= 0.
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In another way, preceding expressions mean that ω acts as a projection operator. Then one
can extract structure function by projection in the following form:

f(x)±∆f(x) =
1∑

y ω(y; a−)Y+(y)

∑
y

ω(y; a−)[σxy ±∆σxy],

g(x)±∆g(x) =
1∑

y ω(y; a+)Y−(y)

∑
y

ω(y; a+)[σxy ±∆σxy].
(3)

For example, one may choose the simplest weight functions as a ω(y; a) = 1 + ay, then a±
parameters take the following values:

a± = −
∑

y Y±(y)∑
y y Y±(y)

. (4)

Note that in this case a± depend only on chosen data grid.
As presented above the procedure of structure function extraction implies rough estimation

of the standard deviation (error) values in eq. (3). To find correctly uncertainty in the fitted
structure functions one should adhere to the standard procedure of the variance (noted here as
D) calculation of random variables function, which assumes here for a given x-bin and a set of
n y-bins (the same holds for g-function)

D[f(σ(x, y1), . . . , σ(x, yn))] =
1[ n∑

i=1

ω(yi; a−)Y+(y)

]2
×

{ n∑
i=1

ω(yi; a−)2D[σ(x, yi)]+

+
∑

i6=j

ω(yi; a−)ω(yj; a−)ρ[σ(x, yi), σ(x, yj)]
√

D[σ(x, yi)]D[σ(x, yj)]

}
.

(5)

In the case of the uncorrelated data with diagonal correlation matrix ρ[σ(x, yi), σ(x, yj)] = δij

we specify correct estimation for deviation of the structure function values

∆f(σ(x, y1), . . . , σ(x, yn)) =
1∣∣∣∣∣

n∑
i=1

ω(yi; a−)Y+(yi)

∣∣∣∣∣

√√√√
n∑

i=1

ω(yi; a−)2D(σ(x, yi)), (6)

that can be larger or smaller than

1
n∑

i=1

ω(yi; a−)Y+(yi)

n∑
i=1

ω(yi; a−)∆σ(x, yi), (7)

dependently of the ω(y; a) sign. In these formulas we assume that the lattice has no uncertainty,
i.e. D[a±] = 0 as given initially.

Optimization procedure

To minimize errors of the structure functions that are extracted from experimental data
σxy ± ∆σxy one can apply an optimization procedure of the following type. Let’s introduce
auxiliary functions

A(a) =
∑

y

ω(y; a)Y+(y), B(a) =
∑

y

ω(y; a)Y−(y),
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S(x; a) =
∑

y

ω(y; a)σxy, ∆S(x; a) =
∑

y

ω(y; a)∆σxy.

Two systems of equations for f(x) and g(x) and errors ∆f(x) and ∆g(x) are

{
A(a)f(x) + B(a)g(x) = S(x; a),
A(b)f(x) + B(b)g(x) = S(x; b);

{
A(a)∆f(x) + B(a)∆g(x) = ∆S(x; a),
A(b)∆f(x) + B(b)∆g(x) = ∆S(x; b).

To find their solutions define the following determinants:

∆(a, b) =

∣∣∣∣
A(a) B(a)
A(b) B(b)

∣∣∣∣ , ∆1(x; a, b) =

∣∣∣∣
S(x; a) B(a)
S(x; b) B(b)

∣∣∣∣ , ∆2(x; a, b) =

∣∣∣∣
A(a) S(x; a)
A(b) S(x; b)

∣∣∣∣

and

δ∆1(x; a, b) =

∣∣∣∣
∆S(x; a) B(a)
∆S(x; b) B(b)

∣∣∣∣ , δ∆2(x; a, b) =

∣∣∣∣
A(a) ∆S(x; a)
A(b) ∆S(x; b)

∣∣∣∣ .

Then we get the solution

f(x) =
∆1(x; a, b)

∆(a, b)
, ∆f(x) =

δ∆1(x; a, b)

∆(a, b)
, g(x) =

∆2(x; a, b)

∆(a, b)
, ∆g(x) =

δ∆2(x; a, b)

∆(a, b)
.

The optimal values of the parameters a and b can be found from the condition of the errors
minimization

min
{a,b}

[wf |∆f(x)|+ wg|∆g(x)|], (8)

where wf and wg – optional weight factors.
So, optimization procedure implies determination of the optimal parameters ak and bk for

each experimental point xk in order to minimize errors in this point. As a result we have the
estimation for the mean values of the structure functions extracted at given experimental points
and rough estimations for corresponding errors (deviations):

f(x) =
∆1(x; a, b)

∆(a, b)
, ∆f(x) =

δ∆1(x; a, b)

∆(a, b)
, g(x) =

∆2(x; a, b)

∆(a, b)
, ∆g(x) =

δ∆2(x; a, b)

∆(a, b)
, (9)

for each k = 1, 2, . . . , n.
It should be noted that by such solution we get only approximate values for errors (likewise

mentioned above argument about correct deviation values), nevertheless one can easily obtain
correct values by finding minimum solution (8) analytically and repeating formulas (5), (6).

A difficulty arises from the fact that the method implies experimental data on a (rectangular)
x, y-lattice which is rarely used, furthermore as a rule experimental bins chosen for analysis and
fitting are not uniformly distributed (e.g. see kinematics in experimental reports [3, 4] ). First
of all we propose to apply the same scheme to regular (rectangular) x,Q2-lattice. The difference
between x, y- and x,Q2-data consist in principle only in redefinition of the structure functions.
Let’s modify Y expressions (2):

Y±(Q2) = 1±
(

1− Q2

s x

)2

, Ỹ+ = Q4, Ỹ− = 2Q2,

σx,Q2 ∼ 2
f(x)

x
+

f̃(x)

x

1

s2x2
Ỹ+ − f̃(x)

x

1

sx
Ỹ−
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and use the similar test weight function ω(Q2; a) = 1 + aQ2. The same orthogonality relations
take the form of ∑

Q2

ω(Q2; a±)Ỹ± = 0,
∑

Q2

ω(Q2; a±) 6= 0,

a± = −
∑

Q2 Ỹ±∑
Q2 Q2Ỹ±

,

As a result one can obtain

∑

Q2

σx,Q2ω(Q2; a±) = 2
f(x)

x

∑

Q2

ω(Q2; a±)+
f̃(x)

x

1

s2x2

∑

Q2

ω(Q2; a±)Ỹ+− f̃(x)

x

1

sx

∑

Q2

ω(Q2; a±)Ỹ−,

∑

Q2

σx,Q2ω(Q2; a+) = 2
f(x)

x

∑

Q2

ω(Q2; a+)− f̃(x)

sx2

∑

Q2

ω(Q2; a+)Ỹ−,

∑

Q2

σx,Q2ω(Q2; a−) = 2
f(x)

x

∑

Q2

ω(Q2; a−) +
f̃(x)

s2x3

∑

Q2

ω(Q2; a−)Ỹ+,

where f̃(x) = f(x)− g(x). Hence

f(x) =
x

2

[∑
Q2 σx,Q2ω(Q2; a+)

∑
Q2 ω(Q2; a−)Ỹ+ + xs

∑
Q2 σx,Q2ω(Q2; a−)

∑
Q2 ω(Q2; a+)Ỹ−

]
[∑

Q2 ω(Q2; a+)
∑

Q2 ω(Q2; a−)Ỹ+ + xs
∑

Q2 ω(Q2; a−)
∑

Q2 ω(Q2; a+)Ỹ−
] ,

g(x) = f(x)−x
s2x2

[∑
Q2 σx,Q2ω(Q2; a−)

∑
Q2 ω(Q2; a+)−∑

Q2 σx,Q2ω(Q2; a+)
∑

Q2 ω(Q2; a−)
]

[∑
Q2 ω(Q2; a+)

∑
Q2 ω(Q2; a−)Ỹ+ + xs

∑
Q2 ω(Q2; a−)

∑
Q2 ω(Q2; a+)Ỹ−

] .

To obtain values of the absolute error one should substitute ∆σx,Q2 instead of σx,Q2 .
One of the advantages of x,Q2-grid consists in possibility of appropriate usage of the inter-

polation through Q2 range, contrary to the y variable range, which combines different Q2 = sxy
values in an unhandy way. Special optimization procedure similar to one described above by
formulas (9) is also applicable over here. Used scheme will be reliable if one obtains data
for rectangular x,Q2-region with narrow Q2 range to neglect existing Q2-dependency of struc-
ture functions (but still with at least two different Q2 values). It should be noted that for
non-uniform grids the summing range

∑
Q2 may depend on selected x-bin and consequently

a± → a±(x) becomes a function of the given x value. Nevertheless, above mentioned scheme
works in the same way.

If one has x,Q2-lattice of the data, which cannot be grouped in the certain x-bins, but
experimental points are distributed in the vicinity of certain x-values, one can eliminate these
difficulties by interpolation methods, as briefly mentioned below.

Interpolation

Here we describe simplest ways to manage with data on irregular grids. One can use the
following Taylor formula for the cross section value near given xi value

σint
i (x,Q2) = σex(xi, Q

2) +
σex(xi, Q

2)

σfit(xi, Q2)
(x− xi)∂xσ

fit(xi, Q
2) + . . .
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σint(x,Q2) = [weighted average] =

∑
i σ

int
i (x, Q2)w(x− xi)∑

i w(x− xi)
.

Here the additional fraction is included with the purpose of normalization - but it may be
omitted. These formulas match up the case when one has data with a small dispersion in
x-values. One can employ some external parameterization, denoted here as σfit, to fix missing
experimental x points by simple interpolation. But total uncertainty of the extracted f(x) and
g(x) values increases by the theoretical uncertainty of these parameterizations.

In case of significant Q2 range Q2-dependence cannot be omitted and one can treat f(x,Q2)
approximately using similar Taylor series of f for Q2 near given Q2

0 value

f(x) → f int(x,Q2) = f(x,Q2
0) +

f(x,Q2
0)

ffit(xi, Q2
0)

(Q2 −Q2
0)∂Q2ffit + . . . ,

or introducing some fixing factor δ(x,Q2) of a pregiven form, e.g. f(x)δ(x,Q2), but these ideas
require f(x) and g(x) as well as Y± and Ỹ± to be redesignated.

χ2-minimization procedure for the parameters a±

Below common χ2 methods are applied to structure functions extraction. First we preserve
usage of the a± parameters (thus implicit method, requiring introducing of the orthogonal
function ω) and modify common procedure. Let’s construct the χ2-function of random cross-
sections and parameters a−, a+ as follows

χ2(σ(x, y1), . . . , σ(x, yn); a−, a+) =
n∑

i,j=1

[σ(x, yi)−mi(a−, a+)]D−1
ij[σ(x, yj)−mj(a−, a+)],

where Dij = ρ[σ(x, yi), σ(x, yj)]
√

D[σ(x, yi)]D[σ(x, yj)] is the covariance matrix and m(a−, a+)
are the expectation values:

mi(a−, a+) = Y+(yi)

n∑
j=1

ω(yj; a−)σ(x, yj)

n∑
j=1

ω(yj; a−)Y+(yj)

+ Y−(yi)

n∑
j=1

ω(yj; a+)σ(x, yj)

n∑
j=1

ω(yj; a+)Y−(yj)

.

As a± are supposed to be estimated parameters only, we may neglect dependence of these
mean values on the random cross-section values σ(x, yj) regarding them as a set of initial exact
numbers.

Next step is to minimize the χ2 function. In the case of the uncorrelated data with
ρ[σ(x, yi), σ(x, yj)] = δij we get the following estimator equations:

−
n∑

i=1

∂mi

∂â−
D−1

ii [σ(x, yi)−mi(â−, â+)] = 0,

−
n∑

i=1

∂mi

∂â+

D−1
ii [σ(x, yi)−mi(â−, â+)] = 0.

Consistent solution of the system gives χ2-estimators â±. One can check consistency calculating
the derivatives, which should not vanish

−
n∑

i=1

∂2mi

∂â2±
D−1

ii [σ(x, yi)−mi(â−, â+)] +
n∑

i=1

(∂mi

∂â±

)2

D−1
ii 6= 0,
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−
n∑

i=1

∂2mi

∂â+∂â−
D−1

ii [σ(x, yi)−mi(â−, â+)] +
n∑

i=1

∂mi

∂â−
D−1

ii

∂mi

∂â+

6= 0.

After that one should substitute obtained â± into the following expressions to get f(x) and
g(x):

f(x) =

n∑
j=1

ω(yj; â−)σ(x, yj)

n∑
j=1

ω(yj; â−)Y+(yj)

, g(x) =

n∑
j=1

ω(yj; â+)σ(x, yj)

n∑
j=1

ω(yj; â+)Y−(yj)

.

Apart from these values, it’s necessary to get estimations for the statistical parameters such as
bias, deviation etc. This analysis is discussed below.

χ2-minimization procedure for the functions of f(x) and g(x)

Here we omit a± parameter and estimate functions f(x) and g(x) explicitly (as before we
refer to x as to fixed bin), thus changing χ2 arguments:

χ2(σ(x, y1), . . . , σ(x, yn); f(x), g(x)) =
n∑

i,j=1

[σ(x, yi)−mi(f(x), g(x))]D−1
ij[σ(x, yj)−mj(f(x), g(x))],

where Dij = ρ[σ(x, yi), σ(x, yj)]
√

D[σ(x, yi)]D[σ(x, yj)] is the covariance matrix and
m(f(x), g(x)) are the expectation values:

mi(f(x), g(x)) = Y+(yi)f(x) + Y−(yi)g(x).

Next step is to minimize the χ2 function. In the case of the uncorrelated data with diagonal
correlation matrix ρ[σ(x, yi), σ(x, yj)] = δij we get the following estimator equations:

−
n∑

i=1

Y+(yi)D
−1
ii [σ(x, yi)− Y+(yi)f(x)− Y−(yi)g(x)] = 0,

−
n∑

i=1

Y−(yi)D
−1
ii [σ(x, yi)− Y+(yi)f(x)− Y−(yi)g(x)] = 0.

Solving this equations we get the following consistent χ2-estimates for f(x) and g(x)

∆ =

∣∣∣∣
∑n

i=1 Y 2
+(yi)D

−1
ii

∑n
i=1 Y+(yi)Y−(yi)D

−1
ii∑n

i=1 Y+(yi)Y−(yi)D
−1
ii

∑n
i=1 Y 2

−(yi)D
−1
ii

∣∣∣∣ 6= 0,

f(x) =
1

∆

∣∣∣∣
∑n

i=1 Y+(yi)D
−1
ii σ(x, yi)

∑n
i=1 Y+(yi)Y−(yi)D

−1
ii∑n

i=1 Y−(yi)D
−1
ii σ(x, yi)

∑n
i=1 Y 2

−(yi)D
−1
ii

∣∣∣∣ ,

g(x) =
1

∆

∣∣∣∣
∑n

i=1 Y 2
+(yi)D

−1
ii

∑n
i=1 Y+(yi)D

−1
ii σ(x, yi)∑n

i=1 Y+(yi)Y−(yi)D
−1
ii

∑n
i=1 Y−(yi)D

−1
ii σ(x, yi)

∣∣∣∣ .

(10)

Last method resembles previous optimization procedure (even in the forms of the matrices),
but crucial point here is the absence of a parameter (it looks like Y is a weight function itself
without any auxiliary parameter). For the case of correlated data one can refer to the same
formulas using simple substitutions, e.g. in the matrix form:

n∑
i=1

Y 2
±(yi)D

−1
ii ⇒

n∑
i,j=1

Y±(yi)D
−1
ij Y±(yj) = YT

±D−1Y±.
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Considered case corresponds to the linear χ2 approach, so using standard statistics one can get
the following formulas, e.g. [2]:

D(f) =
1

∆2
FDF T , F =

(
YT
−D−1Y−

)
YT

+D−1 − (
YT

+D−1Y−
)
YT
−D−1,

D(g) =
1

∆2
GDGT , G =

(
YT

+D−1Y+

)
YT
−D−1 − (

YT
−D−1Y+

)
YT

+D−1.
(11)

Main advantage of the last χ2 approach (least squares method in the linear case) is that it
provides consistent unbiased estimator for f and g with the smallest in its type estimator
variance, according to the Gauss-Markov theorem.

Discussion and numerical results

For the purpose of numerical analysis let’s take the model parameterization for the structure
functions, in the following simplest form:

f(x) = Cfx
αf (1− x)βf , g(x) = Cgx

αg(1− x)βg . (12)

Then one can construct cross section σxy and its error ∆σxy at some points x1, . . . , xn and
y1, . . . , ym, referring to these quantities as expectation value and deviation of some preselected
probability distribution function. Also one may include additional random bias if desired. Using
such initial assumptions it’s easy to compare numerically above listed methods. As expected
by the Gauss-Markov theorem, numerical analysis gives both the lowest values of the χ2(f, g)
function and the correct minimal variances D(f), D(g) for the last χ2 method. At the same time
minimum value χ2(a+, a−) for χ2-a procedure equals to the minimum χ2(f, g) value, although
presence of the random data in the mean values m(a−, a+) increases the errors D[f(a)], D[g(a)].
Both orthogonal method and optimized orthogonal method have the same larger χ2 value for
different optimal sets of a and b and for nonoptimized a± parameters, though they give different
D(f), D(g) values. These estimations include bias to be calculated analytically, contrary to
the linear χ2-f, g procedure without it. This causes additional peculiarity – one can get in this
case either larger D(f) and smaller D(g) (or opposite) in comparison with the χ2 methods.
Detailed analysis can be carried out analytically using standard statistics methods after weight
function definition. It should be noted as well the orthogonal weight function method gives
the expectation values f(a±) and g(a±) (defined by (3)) equal to optimized expectation values
f(a±opt) and g(a±opt) (defined by(9)), but they differs from f and g values obtained using
formulas (10). The orthogonal weight functions approaches with formulas (3) and (9) can be
used as a approximate estimations. The last mentioned least squares procedure gives reasonable
unbiased estimation, and can be used for Born cross-section analysis. It should be noted that
discussed methods can be easily generalized for more common case and for various specific
purposes.
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