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Exact analytical solutions for the dynamics of
quantum multilevel molecular systems in laser

fields and orthogonal q-polynomials
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In the method with the use of integral transform with orthogonal polynomials to
construct exact analytical solutions for dynamics of quantum multilevel systems in
laser field algorithm is presented to solve dynamical equations describing excitation
by laser pulse with an arbitrary prescribed form. Examples of solutions are given.

It is justified that orthogonal polynomials are adequate and natural instruments for
analytical investigation of the dynamics of multilevel quantum systems since orthog-
onal polynomials and probabilities amplitudes of dynamical equations are connected
to one another with Fourier transform.

A brief survey of the theory of q-calculus, the theory of special q-functions and
orthogonal q-polynomials as special cases of basic hypergeometric functions is given.
Certain orthogonal q-polynomials being q-deformed analogues of classical orthogonal
polynomials are presented. Orthogonal q-polynomials are promising mathematical
structures for constructing new multilevel quantum systems and for obtaining exact
analytical solutions describing their coherent dynamics in laser fields and for other
physical problems as well.

PACS numbers: 03.65.Ge; 31.70.Hq; 33.80.Rv; 42.65.Re; 02.30.Gp
Keywords: ultrashort laser pulses, coherent laser excitation, multilevel quantum systems,
exact analytical solutions, orthogonal q-polynomials .

1. Objects, Processes, Equations,
and Aims of the Investigation

Objects of our investigations are multilevel quantum systems. For more then 40 years
two and three level quantum systems were models for many processes in physics of lasers
and in resonance nonlinear optics. These models explained on the quantitative level various
phenomena of matter-radiation interaction. However there exist many processes which demand
multilevel systems as models for adequate description of their dynamics.

Multilevel quantum systems are models of molecules, atoms, resonance media in: (1) vibra-
tional relaxation of molecular gases after laser excitation, (2) selective population of a target
molecular vibrational or atomic level by ultrashort high-power laser pulse, (3) laser control of
chemical reactions, (4) dynamics of free-electron lasers and others.

In the simplest case a multilevel quantum system has equidistant energy levels:

En = ~ω0n, n = 0, 1, 2, . . . . (1)
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Its radiative transitions between neighboring levels are stimulated by laser pulse

El u(t) cos ωl t . (2)

and the transitions are characterized by dipole moments

µn−1,n = µ0,1fn , (3)

Where fn is a dipole moment function. For example the dipole moment function of the quantum
harmonic oscillator has the form

fn =
√

n , n = 1, 2, . . . . (4)

In (2) El is an amplitude of laser pulse envelope, u(t) is a pulse form, ωl is a carrier frequency
of the laser pulse.

Dynamical equations describing excitation of the multilevel system (1), (3) have the form

−i
dan(t)

dt
= Λ(t) {fn+1e

−iεtan+1(t) + fneiεtan−1(t)} ,

an(t = 0) = δn,0, n = 0, 1, 2, . . . ;
(5)

Λ(t) = µ0,1Elu(t)/2~, ε = ω0 − ωl .

Here an(t) are probability amplitudes, ε is a frequency detuning. Probability amplitudes an(t)
along with level populations

ρn(t) = a∗n(t)an(t) (6)

define the dynamics of a quantum system.
The aim of our investigation is to construct a method of solving dynamical equations (5) and

to obtain exact analytical solution for the dynamics of a quantum system in the field of laser
pulse with a prescribed form. It goes without saying an exact analytical solution of equations
for dynamics of a multilevel system is an exceptional case along with a difficult problem for
any investigator in mathematical physics.

2. Method of solving

After using phase transformation an(t) = bn(t) exp(inε t) the dynamical equations (5)
with initial conditions take the form

−i
dbn(t)

dt
= −nεbn(t) + Λ(t) {fn+1bn+1(t) + fnbn−1(t)} ;

bn(0) = δn,0 ;
(7)

and energy level populations are ρn(t) = b∗n(t)bn(t) .
We seek a solution in the form of the integral transform with some orthogonal polynomials:

bn(t) =
1

d0

A(t)

b∫

a

σ(x)
pn(x)

dn

ei β(t) xdx , (8)

where {pn(x)} is some orthogonal polynomial system, a 6 x 6 b, σ(x) is a weight, dn is a
norm. We have to seek A(t), β(t). In the course of obtaining these functions we used recurrence
relation and differential equation for orthogonal polynomials. And then bn(t) and ρn(t) can be
calculated.
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3. Example: Laguerre quantum systems

Let pn(x) be Ln(x, α) — Laguerre polynomials. Then we can construct [1, 2] proper quantum
multilevel systems with dipole moment function

fn =

[
n(n + α)

α + 1

]1/2

, α > −1 . (9)

More exactly we have not one system with equidistant levels but one parameter (α) family of
quantum systems or Laguerre quantum oscillators.

Equations for A(t) and β(t) have the forms:

A−1(t)
dA(t)

dt
= (α + 1)1/2Λ(t) [2β(t) + i]− (α + 1)εβ(t), A(0) = 1,

dβ(t)

dt
= q(t)β2(t) + iq(t)β(t)− 1

2
[q(t) + ε] , β(0) = 0,

(10)

q(t) = 2(α + 1)−1/2Λ(t)− ε . (11)

The equation in β(t) is Riccati one. One can solve it in some special cases.

3.1. Special case: resonance excitation

If the carrier frequency ωl of laser pulse is coincident with intrinsic frequency ω0 of the
oscillator i.e. excitation is resonance (ε = 0) the solution sought is given by

A(t) = (ch z − i sh z)−(α+1), β(t) = − sh z

ch z − i sh z
, (12)

z ≡ z(t) =

t∫

0

(α + 1)−1/2Λ(t′)dt′, (13)

bn(t) = in
[
Γ(α + 1 + n)

n! Γ(α + 1)

]1/2
shnz

chα+1+nz
; ρn(t) =

Γ(α + 1 + n)

n! Γ(α + 1)

sh2nz

ch2(α+1+n)z
. (14)

3.2. Special case: excitation by pulse with rectangular form of envelope

For this pulse Λ(t) ≡ Λ0 and after going to dimensionless variables

t1 = Λ0(α + 1)−1/ 2t, ε1 =
ε

Λ0(α + 1)−1/ 2
(15)

the solution for energy level populations is given by the following formulas:

ρn(t) = Γ(α+1+n)
n! Γ(α+1)

sin2(α+1) ϕ sh2n(t1 sin ϕ)

[sin2 ϕ + sh2(t1 sin ϕ)]α+1+n

for sin ϕ =
√

1− (ε1/2)2, 0 < ϕ < π, |ε1/2| < 1

(16)

ρn(t) = Γ(α+1+n)
n! Γ(α+1)

sh2(α+1)ψ sin2n(t1 shψ)

[sh2ψ + sin2(t1 shψ)]α+1+n

for shψ =
√

(ε1/2)2 − 1, 0 < ψ < ∞, |ε1/2| > 1

(17)
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Here we shell not discuss excitation peculiarities of Laguerre oscillators. Our purpose is to
show action of the method and its results.

4. ORTHOGONAL POLYNOMIALS
are ADEQUATE and NATURAL INSTRUMENTS
for ANALYTICAL INVESTIGATION of the DYNAMICS
of MULTILEVEL QUANTUM SYSTEMS

A method to obtain exact analytical solutions for dynamics of multilevel quantum systems
is sought, developed and generalized by us for a long time. We constructed the method based
on the use of integral transform with orthogonal polynomials. A number of various orthog-
onal polynomial systems were used among them almost all classical orthogonal polynomials:
Hermite, Legendre, Laguerre, Gegenbauer, Jacobi, Charlier, Meixner, Pollaczek, Krawtchouk,
Hahn and proper quantum systems were constructed, and exact solutions for their dynamics in
laser fields were obtained and at last on the bases on the solutions some interesting properties
of these systems and some unexpected phenomena in their dynamics were revealed [1–7] .

The main conclusions from this work are the following:

1. Any system of orthogonal polynomials gives rise to proper multilevel quantum system with
proper characteristics: energy levels En, dipole moment function fn, frequency detuning
εn and so on.

2. Orthogonal polynomial systems are adequate, suitable and natural instruments for con-
structing multilevel quantum systems and for obtaining exact analytical solutions de-
scribing the dynamics of quantum systems in laser fields.

The justification of the last item is orthogonal polynomials are Fourier images of probabilities
amplitudes of Schrödinger equation describing dynamics of multilevel quantum systems.

As one knows Fourier transform of a function a (t) is

Fa (t) =
1√
2π

b∫

a

p (x)e−i t xdx . (18)

Complex valued function a (t) of a real variable t is transformed in real function p(x) of a
real variable x, which can be continuum or discrete variable. So Fourier transform realizes the
transformation from t-space to Fourier x-space. For probability amplitude we have (in simplest
case)

an(t) =

b∫

a

σ(x)
p0

d0

pn(x)

dn

e−i t xdx . (19)

In so far as an(t) = an,m(t) is amplitude with initial condition an(t = 0) = δn,m it is obvious

that the function an,m(t) and the function σ(x)
pm(x)

dm

pn(x)

dn

are connected with Fourier

transform. Parameters r , σ(x) are the coefficients of recurrence formula for polynomials

fn+1pn+1(x) + fnpn−1(x) = (rx + sn)pn(x). (20)

For every {pn(x)} coefficients fn, r, sn are known, They are characteristics of proper
quantum system as well.

That is why orthogonal polynomials are adequate and natural formalism for analytical dy-
namics of quantum systems.
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5. New possibilities to obtain exact analytical solutions with the
use of the Basic Hypergeometric Functions

In theoretical studies of many various physical processes hypergeometric functions are every
so often used. Well known the Hypergeometric Gauss Function has the next form

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k

(c)k

zk

k!
. (21)

Symbol (a)k is defined as

(a)k =
Γ(a + k)

Γ(a)
=

{
1, k = 0
a(a + 1) · · · (a + k − 1), k = 1, 2, . . .

(22)

and it is also called the shifted factorial or a Pochhammer symbol. The Hypergeometric func-
tions rFs(...) give rise to many families of orthogonal hypergeometric polynomials. They are
presented in Table 1.

So called the Basic Hypergeometric Series, also called the hypergeometric q-series or hyper-
geometric q-functions are known much less and they have very small applications in physics
though they were constructed about 250 years ago as well.

Basic Hypergeometric Series has more complicated form:

rΦs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z) =

=
∞∑

k=0

(a1; q)k(a2; q)k...(ar; q)k

(b1; q)k(b2; q)k · · · (bs; q)k

zk

(q; q)k

[
(−1)kq

k(k−1)
2

]s+1−r (23)

Here parameter 0 < q < 1 is known as a base. Symbol

(a; q)k =

{
1, k = 0

(1− a)(1− aq) · · · (1− aqk−1), k = 1, 2, . . .
, (24)

is the q-shifted factorial or a q-Pochhammer symbol. Basic hypergeometric functions are the
generalization of proper ordinary hypergeometric functions. For example

lim
q→1−

3Φ2(q
a1 , qa2 , qa3 ; qb1 , qb2 ; q, z) = 3F2(a1, a2, a3; b1, b2; z) (25)

i.e. basic hypergeometric function goes to hypergeometric function when a base q → 1.
Just as hypergeometric functions give rise to various orthogonal polynomials (see Table 1)

so basic hypergeometric functions give rise to various orthogonal q-polynomials presented in
Table 2.

Table 1: ASKEY-SCHEME OF HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS

4F3 1.Wilson 2.Racah

3F2 3.Continuous dual Hahn 4.Continuous Hahn
5.Hahn 6.Dual Hahn

2F1 7.Meixner-Pollaczek 8.Jacobi
9.Meixner 10.Krawtchouk

1F1/2F0 11.Laguerre 12.Charlier

2F0 13.Hermite
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5.1. Elements of q-calculus

For the expired 250 years from the moment of creation of bases of the theory of the hyper-
geometric functions, the theory of classical orthogonal polynomials based on hypergeometric
functions has turned in extensive, in details developed and widely used in theoretical and math-
ematical physics branch of the theory of special functions. Approximately at the same time
the foundation for interesting generalization of the theory hypergeometric functions has been
laid. These functions have received the name of basic hypergeometric series (or q-functions).
However development of the theory of basic hypergeometric functions went considerably more
slowly. Only in the last some decades in this area significant and intensive progress is evident.
And at present we have its intensive development [8–10].

This generalization of the theory goes back to the following generalization of number

[n]q =
1− qn

1− q
; 0 < q < 1; [α]q =

1− qα

1− q
(26)

with the trivial passage to the limit

lim
q→1

1− qα

1− q
= α. (27)

Q-analogues of many classical special functions were constructed as well. For example

[n]q! = [1]q! [2]q! ... [n− 1]q! [n]q! (28)

is generalization of factorial. There exist q-derivative, q-integral, q-analogues of classical func-
tions expq(z), Jq(z), sinq(z) and q-hypergeometric function, or basic hypergeometric function
etc., including orthogonal q-polynomials. However the theory of special q-functions is little
known among physicists and has no adequate applications in physics.

Table 2: SCHEME OF BASIC HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS

1.q-Askey-Wilson 2.q-Racah
3.Continuous dual q-Hahn 4.Continuous q-Hahn
5.Big q-Jacobi 6.Big q-Laguerre
7.q-Hahn 8.Dual q-Hahn
9.Al-Salam—Chihara 10.q-Meixner-Pollaczek
11.Continuous q-Jacobi 12.Continuous q-ultrasoherical
13.Continuous q-Laguerre 14.Big q-Laguerre
15.Little q-Jacobi 16.Little q-Legendre
17.q-Meixner 18.Quantum q-Krawtchouk
19.q-Krawtchouk 20.Affine q-Krawtchouk
21.Dual q-Krawtchouk
22.Continuous big q-Hermite 23.Continuous q-Laguerre
24.Little q-Laguerre 25.q-Laguerre
26.Alternative q-Charlier 27.q-Charlier
28.Al-Salam—Carlitz I 29.Al-Salam—Carlitz II
30.Continuous q-Hermite 31.Stieltjes-Wigert
32.Discrete q-Hermite I 33.Discreie q-Hermite II
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5.2. Some orthogonal q-polynomials

So-called orthogonal q-polynomials represent a special class of orthogonal polynomials. They
are expressed through basic hypergeometric functions [8–10] and depend on parameter q. Q-
polynomials are generalization of proper well known classical orthogonal polynomials which
are given rise to hypergeometric functions. In turn orthogonal q-polynomials are given rise to
q-hypergeometric functions and set of families of q-polynomials are quite more numerous as we
can see in Table II. Thus it is expected they can have wide field for applications as well.

As an example I show q-analogues of Krawtchouk polynomials of discrete variable. They
are 4 families: Quantum q-Krawtchouk polynomials, q-Krawtchouk polynomials, Affine q-
Krawtchouk polynomials, Dual q-Krawtchouk polynomials.

For exanple q-Krawtchouk polynomials of discrete variable x = 0, 1, . . . , N are, in defini-
tion,

Kn(q−x; p, N ; q) := 3Φ2(q
−n, q−x, −pqn; q−N , 0; q, q)

=
n∑

m=0

(q−n; q)m(q−x; q)m(−pqn; q)m

(q−N ; q)m

qm

(q; q)m

,
(29)

n = 0, 1, . . . , N ; x = 0, 1, . . . , N ; parameters are 0 < p < 1, 0 < q < 1 and natural
number N . The q-polynomials obey orthogonality relations

N∑
x=0

σ(x) Km(q−x; p, N ; q) Kn(q−x; p, N ; q) = h2
n δm,n , (30)

and have the following weigh function and square norm

σ(x) =
(q−N ; q)x

(q; q)x

(−p)−x, (31)

h2
n =

(q, −pqN+1; q)n

(−p, q−N ; q)n

(1 + p)

(1 + pq2n)
(−pq; q)N p−Nq−

(N+1)N
2 (−pq−N)nqn2

. (32)

At last three terms recurrence relation for them as known as well

AnKn+1(q
−x) + CnKn−1(q

−x) =
[
(An + Cn)−Rn(1− q−x)

]
Kn(q−x), (33)

Kn(q−x) := Kn(q−x; p, N ; q), (34)

with the coefficients

An =
(1− qn−N)(1 + pqn)

(1 + pq2n)(1 + pq2n+1)
, Cn = −pq2n−(N+1) (1 + pqn+N)(1− qn)

(1 + pq2n−1)(1 + pq2n)
, Rn ≡ 1. (35)

In addition

lim
q→1−

Km(q−x; p, N ; q) = Kn(x;
1

1 + p
, N). (36)

This is all almost to use these q-polynomials in physical problems. Now one can construct
proper multilevel quantum systems, study their properties and obtain exact analytical solutions
for their dynamics.

Orthogonal q-polynomials are wonderful and promising mathematical structures
for constructing new multilevel quantum systems and for obtaining exact analytical
solutions describing their coherent dynamics in laser fields and for other physical
problems as well.
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