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The equations for colour scalar particles in the
field of the plane-wave collective excitations of
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Matrix equations for multiplet of colour scalar particles in the fields of collective
excitations of a quark-gluon plasma are proposed. These equations are analyzed for a
longitudinal non-abelian plane-wave propagating through the Quark-Gluon Plasma.
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1. Introduction

The longwavelength excitations of a quark-gluon plasma at high temperature can be described
as collective oscillations of gauge and fermionic average fields [1, 2].

At leading order in the gauge coupling g, (g ¿ 1 in high temperature deconfined plasma), the
collective dynamics is described entirely by a set of effective equations for soft gauge mean fields
Aa

µ(x) (a are color indices for the adjoint representation of the gauge group) which describe long
wavelength (η ∼ 1/gT ) and low frequency (ω ∼ gT ) excitations (T denotes temperature). The
equations satisfied by Aa

µ(x) are [2, 3]

∂µF
a
µν + igfabcAb

µF
c
µν = ja

µ, (1)

where F a
µν = ∂µA

a
µ − ∂νA

a
µ − igfabcAb

µA
c
ν , fabc are the structure constants of the SU(N) group.

The induced current ja
µ(x) describes the response of plasma to the color gauge fields Aa

µ(x).
It is proportional to fluctuations in the phase-space color densities of quarks and gluons. Its
expression for SU(N) gauge group reads

ja
µ(x) = 3ω2

P

∫
dΩ

4π
vµW

a(x; v) (2)

Here ω2
P = (2N + Nf )g

2T 2/18 is the plasma frequency, Nf is the number of quark flavors,
vµ = (1,v), where v = q/|q| is the velocity of the hard particle with momentum q, and the
integral

∫
dΩ runs over all directions of the unit vector v. Furthermore, the functions Wa(x; v)

are generally nonlocal and nonlinear functionals of the gauge fields Aµ(x) and are related to
color polarizability of the plasma [3].

We note that, in contrast to the vacuum case, the solutions of the equations (1) for high
temperature quark-gluon plasma have direct physical sense: they correspond to the collective
color excitations of the QGP.

In this work we investigate the interaction of color scalar particles with the collective exci-
tations of QGP. We use the five-component Duffin-Kemmer relativistic wave equations (RWE)
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to describe SU(N) multiplets of scalar particles which interact with collective plane wave QGP
excitation. We analyze this equations for SU(2) longitudinal plane wave.

2. Covariant method for solving of relativistic wave equation in an
external color gauge field

The equations for a multiplet of particles for an arbitrary spin in an external color vector
field has the form [4, 5]

(βµ∂µ + β0)Ψ
k − igτa

knAa
µΨn = 0, (3)

where Ψk = Ψk(x) is a multicomponent function, x = {xµ} = {x0, x} is a 4-vector of space-
time, βµ and β0 are constant square matrices, τa = {τa

kn} are generators of the infinitesimal
transformations of SU(N) group in the space of functions Ψk, ([τaτ b, τ bτa] = ifabcτ c).

Let us describe the SU(2) multiplet of scalar particles of mass m by means of the Duffin-
Kemmer relativistic wave equations. In this case the multicomponent function Ψk(x) has the
form

Ψk = (Ψk
L(x)) =

(
Ψk

0

Ψk
µ

)
, (4)

where the function Ψk is transformed by means of the set of irreducible representations of the
Lorentz group: T = T 00 ⊕ T

1
2

1
2 , and any irreducible representation of the SU(2) group of the

weight l. ([τaτ b, τ bτa] = iεabcτ
c, εabc is the completely antisymmetric tensor, ε123 = 1).

The matrices βµ and β0 have the form [6]

βµ = e0µ + eµ0, β0 = m⊗ 1, (5)

where eAB (A,B= 0, µ) are elements of the complete matrix algebra in the space of functions
Ψk(x).

Color vector fields Aa
µ are external fields of collective plane-wave excitations of QGP. Such

solutions of the equations (1) and (2) have been found in paper [3] and have the form

Aa
µ(x) = Aa

µ(ϕ), ∂µA
a
µ(x) = 0. (6)

Here Aa
µ depends on x only through the variable ϕ = kµxµ = kx, where k = (ik0,k) is a fixed,

time-like, four-vector (k2 = −k2
0 + k2 = −(ω2 − k2) = −η2 < 0). For the classical Yang-Mills

equations in vacuum, plane-wave solutions (k2 = 0) have been investigated in [7, 8]
Let us use the covariant method of solving of the RWE in external fields [9] for investigation

of the equations (3). We find the solutions of the equations (3) for the multiplets of the scalar
particles in the field of QGP excitations (5) in the form

Ψl(x) = χl(ϕ)eipx, (7)

where p = (p, ip0) is the energy-momentum four-vector of scalar fields Ψl, p2 = −m2, ϕ = kx =
−k0x0 + kx, kAa = 0
After substitution of (6) and (7) in (3) we obtain the equation for functions χl

k̂χ′l + (ip̂ + m)χl − ig(τa)lnÂ
aχn = 0, (8)

where Âa = βµAa
µ.

The four-dimension functions χl(ϕ) and the result of acting the operator k̂a = kµβ
µ on they

are represented in the form

χl =

(
U l

0

U l

)
, k̂χl =

(
kU l

kU l
0

)
. (9)
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Here U l
0 is a multiplet of scalar functions, U l is a multiplet of four-vector functions, kU l = kµU

l
µ.

Inserting (9) in (8) we obtain the following system of equations for the functions U l
0, U l:

(kU ′l) + i(pU l) + mU l
0

− ig(τa)ln (AaUn) = 0, (10)

U ′l
0 k + mU l + ipU l

0 − ig(τa)lnAaUn
0 = 0. (11)

where U ′l = ∂ϕU ′l(ϕ), U ′l
0 = ∂ϕU ′l

0 (ϕ).
From the equations (10) and (11) we obtain the equations for the multiplet of scalar functions

U l
0. Multiplying the equations (10) by vector k, we found

kU l = −iµ

m
U l

0 −
k2

m
U ′l

0 , (12)

where µ = kp = −p0k0 + kp.
In turn, after multiplication of (12) on vector k we obtain

U l = − iµ

m

k

k2
U l

0 −
1

m
kU ′ l

0. (13)

The multiplication of expression (11) on vector p leads to the equation

ipU l = −iµ

m
U ′ l

0 −mU l
0 −

g

m
(τa)ln(pAa)Un

0 . (14)

By means of analogous transformations we obtain

U ′l
0 k + mU l + ipU l

0 − ig(τa)lnAaUn
0 = 0, (15)

AaU l =

− 1

m

{
i(pAa)δlm − ig(τ d)lm(AaAd)

}
Um

0 .
(16)

Using the equations (13)-(16) we obtain from the equation (12) the second-order differential
equations for the multiplet of the scalar functions U l

0

DU l
0 = GlnU

l
0,

D = (∂ϕϕ + κ∂ϕ), κ = −2iµ

η2
,

Gln =
2g

η2
(τa)ln(pAa)

− g2

η2
(τa)ln(τ d)nm(AaAd)

(17)

After substitution
U l

0(ϕ) = e(−κ
2
ϕ)Φl

0(ϕ)), (18)

we obtain the equations for function Φ0
l in the form

Φ′′ l
0 =ΓlnΦl

0,

Γln =Gln +
µ2

η4
δln

=
µ2

η4
δln +

2g

η2
(τa)ln(pAa)

− g2

η2
(τa)ln(τ d)nm(AaAd).

(19)
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The equations (19) are the second-order differential equations, in contrast to the first-order
ones which were solved in [4, 5] for multiplet of scalar particles in the external massless (k2 = 0)
non-Abelian plane-wave fields.

3. Colour scalar particles in longitudinal SU(2) plane-wave exci-
tations of QGP

Let us investigate the equations (19) for longitudinal SU(2) plane-wave excitations of QGP.
Such solutions of the equation (1) and (2) has been obtained in the paper [3] in the form

A1 = 0, A2 = 0, A3
µ(ϕ) = e3

µh3(ϕ)

{
e3

µ(k)
}

=
1√

ω2 − k2

{
|k|, ω k

|k|
}

(20)

where the function h3(ϕ) satisfies the harmonic oscillator equations

(ω2 − k2)h′′3 + Ω2
Lh3 = 0, (21)

and has the form

h3(ϕ) = C1 cos(νLϕ) + C1 sin(νLϕ),

νL = ΩL/
√

ω2 − k2,

Ω2
L = 3ωP

ω2 − k2

k2

(
Q

(
ω

|k|
)
− 1

)
.

(22)

Here C1 and C2 are integration constants, Q(u) = (u/2) ln((u + 1)/(u− 1)).
After substitution of (20) in (19) we obtain

Φ′′ l
0 =ΓlnΦl

0,

Γln =
µ2

η4
δln +

2g

η2
(τ 3)ln(pe3)h3(ϕ)

− g2

η2
(τ 3)2

lnh
2
3(ϕ)

(23)

To eliminate τ 3 we can use the projective operator method [9]. The characteristic equation
of matrices τ 3 is written as

pl(τ 3) = [(τ 3)2 − l2][(τ 3)2 − (l − 1)2] . . .

. . .

[
(τ 3)2 −

(
3 + (−1)2l

4

)]

× (τ 3)
1
2
(1+(−1)2l) = 0.

(24)

where l is the SU(2) representation weight.

17



L. F. Babichev

The projective operator for the eigenvalues λ = −l,−l + 1, . . . , l − 1, l of the matrices τ 3 is
%λ = Qλ(τ 3)/Qλ(λ). Here Qλ(τ 3) is the truncated minimal polynomial,

Qλ(τ 3) = [(τ 3)2 − l2][(τ 3)2 − (l − 1)2] . . .

. . . [(τ 3)2 − (λ + 1)2][(τ 3)2 − (λ− 1)2] . . .

. . .

[
(τ 3)2 −

(
3 + (−1)2l

4

)]

× (τ 3)
1
2
(1+(−1)2l).

(25)

After multiplication of %λ on (23) and using the relations %λτ
3 = λ%λ and %λ(τ

3)2 = λ2%λ we
obtain the second order equation without matrices τ 3:

Φ′′ l
λ(ϕ) =Γ(λ, ϕ)Φl

λ(ϕ), (26)

Γ(λ, ϕ) =
µ2

η4
+

2g

η2
λ(pe3)h3(ϕ) (27)

− g2

η2
λ2h2

3(ϕ) (28)

where Φl
λ(ϕ) = %λΦ

l
0(ϕ)

The function Ψk is expressed through the function Φl
λ(ϕ) as follows:

U l
0(ϕ) = e(−κ

2
ϕ)

∑

λ

Φl
λ(ϕ) (29)

U l(ϕ) = −iµ

m

k

η2
U l

0(ϕ)− 1

m
kU ′ l

0(ϕ). (30)

Because of the functions Γ(λ, ϕ) in the equations (26) are periodic, the functions Φl
λ(ϕ) satisfy

the ordinary differential Hill equations. Solutions of such equations can be found in the form of
convergent series [10].

4. Conclusions

In this paper we have investigated the equations for a SU(2) multiplet of colour scalar parti-
cles in the fields of the plane-wave excitations of QGP. The covariant method of solving RWE
equations are used to analyze these equations. For SU(2) color group the equations for multiplet
of scalar particles in the field of the longitudinal plane-wave excitations of QGP are divided into
a set of independent ordinary second-order differential Hill-equations, which depend on single
variable ϕ = kµxµ.
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