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Maxwell equations in Riemannian space-time,
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In the paper, the known possibility to consider the (vacuum) Maxwell equations
in a curved space-time as Maxwell equations in flat space-time (Mandel’stam L.I.,
Tamm I.E. [1,2]) as taken in an effective media the properties of which are determined
by metrical structure of the initial curved model gαβ(x) is studied

Hρσ(x) =
√
−g(x) gρα(x)gσβ(x)

[
ε0 ∆ µν

αβ Fµν(x)
]

;

∆ ab
αβ – 4-rank tensor; metrical structure of the curved space-time generates effective

constitutive equations for electromagnetic fields:

D = ε0 ε(x) E + ε0c α(x) B , H = ε0c β(x) E +
1
µ0

µ(x) B ,

the form of four symmetrical tensors εik(x), αik(x), βik(x), µik(x) is found explicitly
for general case of an arbitrary Riemannian space-time geometry gαβ(x):

εik(x) =
√−g [g00(x)gik(x)− g0i(x)g0k(x)], αik(x) = +

√−g gij(x) g0l(x) εljk,

βik(x) = − √−g g0j(x) εjil glk(x) , µik(x) =
√−g

1
2
εimngml(x)gnj(x)εljk .

The main peculiarity of the geometrical generating for effective elec-
tromagnetic medias characteristics consists in the following: four tensors
εik(x), αik(x), βik(x), µik(x) are not independent and obey some additional con-
straints between them.Several, the most simple examples are specified in detail:
it is given geometrical modeling of the anisotropic media (magnetic crystals) and
the geometrical modeling of a uniform media in moving reference frame in the back-
ground of Minkowski electrodynamics – the latter is realized trough the use of a
non-diagonal metrical tensor determined by 4-vector velocity of the moving uniform
media gam = [ gam +(εµ−1) uaum ]/

√
µ . Also the effective material equations gen-

erated by geometry of space of constant curvature (Lobachevsky and Riemann mod-
els) are determined. General problem of geometrical transforming arbitrary (linear)
material equations, given by ε(0), α(0), β(0), µ(0), has been studied – corresponding
formulas have been produced.
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1. Riemannian geometry and Maxwell theory

Let us start with the Maxwell equations in Minkowski space: in vector notation they are
[3-6]

(I) div B = 0 , rot E = −∂B

∂t
,

(II) εε0 div E = ρ ,
1

µµ0

rot B = J + εε0
∂E

∂t
. (1)

With the use of material equations

H =
B

µµ0

, D = εε0 E (2)

eqs. (1) can be written in terms of four vectors as follows

(I) div cB = 0 , rot E = −∂cB

∂x0
,

(II) div D = j0 , rot
H

c
= j +

∂D

∂x0
(3)

where x0 = ct , ja = (ρ,J/c) , In terms of two electromagnetic tensors:

(Fαβ) =

∣∣∣∣∣∣∣

0 −E1 −E2 −E3

+E1 0 −cB3 +cB2

+E2 +cB3 0 −cB1

+E3 −cB2 +cB1 0

∣∣∣∣∣∣∣
, (Hαβ) =

∣∣∣∣∣∣∣

0 −D1 −D2 −D3

+D1 0 −H3/c +H2/c
+D2 +H3/c 0 −H1/c
+D3 −H2/c +H1/c 0

∣∣∣∣∣∣∣

eqs. (3) take the form

(I) ∂aFbc + ∂bFca + ∂cFab = 0 , (II) ∂bH
ba = ja . (4)

In vacuum case, the material equations (note the notation Ei = −Ei, Di = −Di, Bi =
+Bi, H i = +Hi )

D = ε0E = (Di) , H =
1

µ0

B = (H i),

will look in tensor form as follows:

Hab(x) = ε0 F ab(x) .

The situation is quite different in non-vacuum case. For instance, the material equations for a
uniform media

D = ε0εE = (Di) , H =
1

µ0µ
B = (H i),

these relationships can be written in short form with the help of subsidiary 4× 4 - matrix

ηam =
√

ε

∣∣∣∣∣∣∣

1/k 0 0 0
0 −k 0 0
0 0 −k 0
0 0 0 −k

∣∣∣∣∣∣∣
, k =

1√
εµ

, Hab = ε0 ηamηbn Fmn (5)

When extending Maxwell theory to the case of space-time with non-Euclidean geometry,
which can describe gravity according to General Relativity [6], one must change previous equa-
tions to a more general form [6] (for simplicity, let us start with the most simple case of vacuum
Maxwell equations):

(I) ∇αFβγ +∇βFγα +∇γFαβ = 0 ,

(II) ∇βHβα = jα , Hαβ = ε0 Fαβ . (6)
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2. Maxwell equations in Riemannian space-time and a media

Let us discuss in detail the known possibility [1-2] to consider the (vacuum) Maxwell equa-
tions in a curved space-time as Maxwell equations in flat space-time but taken in an effective
media the properties of which are determined by metrical structure of the initial curved model
gαβ(x). Let us restrict ourselves to the case of curved space-time models which are parameter-
ized by the same quasi-Cartesian coordinate system xa.

Vacuum Maxwell equations in a Riemannian space-time, parameterized by the same quasi-
Cartesian coordinates (to distinguish formulas referring to a flat and curved models let us use
small letters to designates electromagnetic tensors in curved model, fab and hab )

(I) ∂afbc + ∂bfca + ∂cfab = 0 , (II)
1√−g

∂b

√−g f ba =
1

ε0

ja . (7)

One can immediately see that introducing new (formal) variables (there exists one special case;
namely, if g(x) does not depend on coordinates in fact then the factor

√−g can be omitted
from the formulas and below)

Fab = fab, Hba = ε0

√−g gam(x)gbn(x) fmn(x),
√−g ja −→ ja (8)

equations (7) in the curved space can be re-written as Maxwell equations of the type (??) in
flat space but in a media:

(I) ∂aFbc + ∂bFca + ∂cFab = 0 (II) ∂b F ba =
1

ε0

ja . (9)

At this, relations playing the role of material equations are determined by metrical structure:

Hβα(x) = ε0 [
√
−g(x) gαρ(x)gβσ(x) ] Fρσ(x) ; (10)

if gαβ does not depend upon coordinates, then the factor
√
−g(x) can be omitted — see (8).

3. Metrical tensor gαβ(x) and material equations

In this section let us consider the material equations for electromagnetic fields which are
generated by metrical structure of the curved space-time model. Consider the case of arbitrary
metrical tensor

gαβ(x) =

∣∣∣∣∣∣∣

g00 g01 g02 g03

g01 g11 g12 g13

g02 g12 g22 g23

g03 g13 g23 g33

∣∣∣∣∣∣∣
. (11)

We are to obtain a 3-dimensional form of relation (10). Their general structure should be as
follows (for discussion of different types of electromagnetic medias see in [7-12]):

Di = ε0 εik(x) Ek + ε0c αik(x) Bk ,

H i = ε0c βik(x) Ek +
1

µ0

µik(x) Bk . (12)

Four dimensionless (3 × 3)-matrices εik(x), αik(x), βik(x), µik(x) should not be independent
because they are bilinear functions of 10 independent components of the symmetrical tensor
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gαβ(x). After simple calculation, one produces expressions for four tensors:

εik(x) =
√−g (g00(x) gik(x)− g0i(x) g0k(x)) ,

µik(x) =
1

2

√−g εimn gml(x)gnj(x) εljk ,

αik(x) = +
√−g gij(x) g0l(x) εljk ,

βik(x) = −√−g g0j(x) εjil glk(x) . (13)

The above form the tensors obey special symmetry conditions:

εik(x) = +εki(x) , µik(x) = +µki(x) , βki(x) = αik ; (14)

which mean that the (6× 6)-matrix defining material equations

∣∣∣∣
Di(x)
H i(x)

∣∣∣∣ =

∣∣∣∣∣
ε0 εik(x) ε0c αik(x)

ε0c βik(x) µ−1
0 µik(x)

∣∣∣∣∣
∣∣∣∣
Ek(x)
Bk(x)

∣∣∣∣ (15)

is a symmetrical matrix. Four (material) tensor in the above formulas are defined by

[ εik(x) ] =
√−g g00

∣∣∣∣∣∣
g11 g12 g13

g21 g22 g23

g31 g32 g33

∣∣∣∣∣∣
−√−g

∣∣∣∣∣∣
g1 g1 g1 g2 g1 g3

g2 g1 g2 g2 g2 g3

g3 g1 g3 g2 g3 g3

∣∣∣∣∣∣
,

µik(x) = (
√−g

∣∣∣∣∣∣
(g22g33 − g23g32) (g31g23 − g21g33) (g21g32 − g22g31)
(g32g13 − g33g12) (g33g11 − g31g13) (g31g12 − g32g11)
(g12g23 − g13g22) (g13g21 − g11g23) (g11g22 − g12g21)

∣∣∣∣∣∣
,

αik(x) =
√−g

∣∣∣∣∣∣
(−g12g3 + g13g2) (g11g3 − g13g1) (−g11g2 + g12g1)
(−g22g3 + g23g2) (g21g3 − g23g1) (−g21g2 + g22g1)
(−g32g3 + g33g2) (g31g3 − g33g1) (−g31g2 + g32g1)

∣∣∣∣∣∣
,

βik(x) =
√−g

∣∣∣∣∣∣
(−g12g3 + g13g2) (−g22g3 + g23g2) (−g32g3 + g33g2)
(g11g3 − g13g1) (g21g3 − g23g1) (g31g3 − g33g1)

(−g11g2 + g12g1) (−g21g2 + g22g1) (−g31g2 + g32g1)

∣∣∣∣∣∣
. (16)

4. Geometrical modeling of the uniform media

Let us consider one special form of the metrical tensor:

gαβ(x) =

∣∣∣∣∣∣∣

a2 0 0 0
0 −b2 0 0
0 0 −b2 0
0 0 0 −b2

∣∣∣∣∣∣∣
, (17)

where a2 and b2 are arbitrary (positive) numerical parameters. This is a special case mentioned
in connection with eq. (8): if g(x) does not depend on coordinates in fact then the factor

√−g
can be omitted from the formulas. Acting so we get the material equations generated by that
geometry

(εik) =
1

a2b2

∣∣∣∣∣∣
−1 0 0
0 −1 0
0 0 −1

∣∣∣∣∣∣
, (µik) =

1

b4

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
, (18)
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or differently

Di = − ε0

a2b2
Ei , H i =

1

µ0b4
Bi , (19)

from which it follows

b2 =
√

µ , a2 =
1

ε

1√
µ

. (20)

Corresponding metrical tensor (17) is

gαβ(x) =
1√
ε

∣∣∣∣∣∣∣

1/
√

εµ 0 0 0
0 −√εµ 0 0
0 0 −√εµ 0
0 0 0 −√εµ

∣∣∣∣∣∣∣
. (21)

5. Geometrical modeling of an anisotropic media

Let us extend the previous analysis and consider another metrical tensor:

gαβ =

∣∣∣∣∣∣∣

a2 0 0 0
0 −b2

1 0 0
0 0 −b2

2 0
0 0 0 −b2

3

∣∣∣∣∣∣∣
, (22)

where a2, b2
1, b

2
2, b

2
3, are arbitrary numerical parameters. The material equations generated by

that geometry are

Di = ε0ε
ik Ek , (εik) = a−2

∣∣∣∣∣∣

−b−2
1 0 0

0 −b−2
2 0

0 0 −b−2
3

∣∣∣∣∣∣
, (23)

H i = µ−1
0 µik Bk , (µik) =

∣∣∣∣∣∣

b−2
2 b−2

3 0 0
0 b−2

3 b−2
1 0

0 0 b−2
1 b−2

2

∣∣∣∣∣∣
,

or differently

D1 = − ε0

a2b2
1

E1 , D2 = − ε0

a2b2
2

E2 , D3 = − ε0

a2b2
3

E3 ,

H1 =
1

µ0 b2
2b

2
3

B1 , H2 =
1

µ0 b2
3b

2
1

B2 , H3 =
1

µ0 b2
1b

2
2

B3 .

These material equations should be compared with

D1 = −ε0ε1 E1 , D2 = −ε0ε2 E2 , D3 = −ε0ε3 E3 ,

H1 =
1

µ0µ1

B1 , H2 =
1

µ0µ2

B2 , H3 =
1

µ0µ3

B3 ,

from which it follows

ε1 =
1

a2b2
1

, ε2 =
1

a2b2
2

, ε3 =
1

a2b2
3

,

µ1 = b2
2 b2

3 , µ2 = b2
3 b2

1 , µ3 = b2
1 b2

2 . (24)
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One can readily obtain

µ1

ε1

=
µ2

ε2

=
µ3

ε3

= (a2 b2
1 b2

2 b2
3) = −g ,

−g =

√
µ2

1 + µ2
2 + µ2

3

ε2
1 + ε2

2 + ε2
2

,
µi√

µ2
1 + µ2

2 + µ2
3

=
εi√

ε2
1 + ε2

2 + ε2
2

. (25)

The latter means that one may use four independent parameters, ε, µ, ni:

εi = ε ni , µi = µ ni, n2 = 1 (26)

One can readily express b2
i in terms of µi:

µ2µ3 = b4
1 (b2

2 b2
3) = b4

1 µ1 =⇒ b2
1 =

√
µ2µ3

µ1

=
√

µ

√
n2n3

n1

,

µ3µ1 = b4
2 (b2

3 b2
1) = b4

2 µ2 =⇒ b2
2 =

√
µ3µ1

µ2

=
√

µ

√
n3n1

n2

,

µ1µ2 = µ2
0 b4

3 (b2
1 b2

2) = µ0 b4
3 µ3 =⇒ b2

3 =

√
µ1µ2

µ3

=
√

µ

√
n1n2

n3

.

(27)

In turn, from a2 b2
1 b2

2 b2
3 = µ/ε it follows

a2 =
µ

ε

1

b2
1b

2
2b

2
3

=
1

ε
√

µ

1√
n1n2n3

(28)

The formula (27)-(28) provide us with (anisotropic) extension

gab(x) =
1√
ε

∣∣∣∣∣∣∣∣∣∣∣

1√
εµ

1√
n1n2n3

0 0 0

0 −√εµ
√

n2n3

n1
0 0

0 0 −√εµ
√

n3n1

n2
0

0 0 0 −√εµ
√

n1n2

n3

∣∣∣∣∣∣∣∣∣∣∣

(29)

of the previous (isotropic) metrical tensor.

6. The moving media and anisotropy

One other, more involved, example of effective anisotropic media is provided by the material
equations for uniform media for a moving observer (more details see in [14-16]):

∆abmn =
ε0

µ
[ gam + (εµ− 1) uaum ] [ gbn + (εµ− 1) ubun ] , Hab(x) = ∆abmn Fmn .

(30)
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Corresponding four 3-dimensional tensors are

εik =
1

µ

∣∣∣∣∣∣
(−1 + γu1u1 − γu0u0) γu1u2 γu1u3

γu1u2 (−1 + γu2u2 − γu0u0) γu2u3

γu3u1 γu3u2 (−1 + γu3u3 − γu0u0)

∣∣∣∣∣∣
,

µik =
1

µ

∣∣∣∣∣∣
(1− γu2u2 − γu3u3) γu1u2 γu1u3

γu1u2 (1− γu3u3 − γu1u1) γu2u3

γu3u1 γu3u2 (1− γu1u1 − γu2u2)

∣∣∣∣∣∣
,

αik =
1

µ

∣∣∣∣∣∣
0 −γu0u3 +γu0u2

+γu0u3 0 −γu0u1

−γu0u2 +γu0u1 0

∣∣∣∣∣∣
, βik =

1

µ

∣∣∣∣∣∣
0 +γu0u3 −γu0u2

−γu0u3 0 +γu0u1

+γu0u2 −γu0u1 0

∣∣∣∣∣∣
.

(31)

Let us deduce 3-dimensional vector form of these relations. For the vector Di we have

D1 =
ε0

µ
[ (−1 + γu1u1 − γu0u0)E1 + γu1u2E2 + γu1u3E3] +

ε0c

µ
(−γu0u3B2 + γu0u2B3)

D2 =
ε0

µ
[ +γu1u2E1 + (−1 + γu2u2 − γu0u0)E2 + γu2u3E3] +

ε0c

µ
(γu0u3B1 − γu0u1B3)

D1 =
ε0

µ
[+γu1u3E1 + γu2u3E2 + (−1 + γu3u3 − γu0u0)E3] +

ε0c

µ
(−γu0u2B1 + γu0u1B2)

and further

D1 = −ε0

µ
E1 +

ε0γ

µ
[−u0u0E1 + (u1E1 + u2E2 + u3E3) u1 ] +

ε0cγ

µ
u0 (u2B3 − u3B2) ,

D2 = −ε0

µ
E2 +

ε0γ

µ
[−u0u0E2 + (u1E1 + u2E2 + u3E3) u2 ] +

ε0cγ

µ
u0 (u3B1 − u1B3) ,

D3 = −ε0

µ
E3 +

ε0γ

µ
[−u0u0E3 + (u1E1 + u2E2 + u3E3) u3 ] +

ε0cγ

µ
u0 (u1B2 − u2B1) ,

With the use of notation

u0 =
1√

1− V 2
, ui =

V i

√
1− V 2

previous relations look as follows

D1 = −ε0

µ
E1 +

ε0γ

µ

[−E1 + (V 1E1 + V 2E2 + V 3E3) V 1 ]

1− V 2
+

ε0cγ

µ

(V 2B3 − V 3B2)

1− V 2
,

D2 = −ε0

µ
E2 +

ε0γ

µ

[−E1 + (V 1E1 + V 2E2 + V 3E3) V 2 ]

1− V 2
+

ε0cγ

µ

(V 3B1 − V 1B3)

1− V 2
,

D3 = −ε0

µ
E3 +

ε0γ

µ

[−E3 + (V 1E1 + V 2E2 + V 3E3) V 3 ]

1− V 2
+

ε0cγ

µ

(V 1B2 − V 2B1)

1− V 2
,

or in vector form they are

D = +
ε0

µ
E +

ε0γ

µ

E− (VE) V

1− V 2
+

ε0cγ

µ

V ×B

1− V 2
, (32)

Now analogously we should consider three relations for H i:

H1 =
1

µ0µ
[ (1− γu2u2 − γu3u3) B1 + γu1u2B2 + γu1u3B3 ] +

ε0c

µ
(γu0u3E2 − γu0u2E3)

H2 =
1

µ0µ
[ γu1u2B1 + (1− γu3u3 − γu1u1) B2 + γu2u3B3 ] +

ε0c

µ
(γu0u3E2 − γu0u2E3)

H3 =
1

µ0µ
[ γu3u1B1 + γu3u2B3 + (1− γu1u1 − γu2u2) B3 ] +

ε0c

µ
(γu0u2E1 − γu0u1E2)
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or further

H1 =
1

µ0µ
B1 +

γ

µ0µ
(−u2u2 B1 − u3u3 B1 + u1u2B2 + u1u3B3 ) +

ε0c γ

µ
u0 (u3E2 − u2E3)

H2 =
1

µ0µ
B2 +

γ

µ0µ
(+u1u2B1 − u3u3 B2 − u1u1 B2 + u2u3B3 ) +

ε0c γ

µ
u0 (u3E2 − u2E3)

H3 =
1

µ0µ
B3 +

γ

µ0µ
(+u3u1B1 + u3u2B2 − u1u1 B3 − u2u2 B3 ) +

ε0c γ

µ
u0 (u2E1 − u1E2)

Noting identities

(−u2u2 B1 − u3u3 B1 + u1u2B2 + u1u3B3 ) =

= u2(u1B2 − u2 B1)− u3(u3B1 − u1B3) = [u× (u×B)]1
(+u1u2B1 − u3u3 B2 − u1u1 B2 + u2u3B3 ) =

= u3(u2B3 − u3 B2)− u1(u1B2 − u2 B1) = [u× (u×B)]2
(+u3u1B1 + u3u2B2 − u1u1 B3 − u2u2 B3 ) =

= u1(u3B1 −B1U
3))− u2(u2 B3 − u3B2) = [u× (u×B)]3

previous relations can be rewritten in a vector form as follows:

H =
1

µ0µ
B +

γ

µ0µ

V × (V ×B))

1− V 2
+

ε0c γ

µ

V × E

1− V 2
(33)

Relations (32)-(33) provide us with 3-dimensional vector form of material equations in media
moving with velocity V . Firstly they were produced by H. Minkowski.

7. Effective material equations generated by Riemannian geome-
try of a space of constant positive curvature

A 3-dimensional space of constant positive curvature, S3, has many applications in physical
problems. The most simple realization of this model is given by three-sphere in 4-space (the
space of the unitary group SU(2) ):

W 2
4 + W 2

1 + W 2
2 + W 2

3 = R2 , w1 =
W1

R
, and so on ; (34)

R is a curvature radius. These four coordinate are connected with quasi-spherical ones be
relations:

w4 = cos χ, wi = sin χ ni , ni = (sin θ cos φ, sin θ sin φ, sin θ) . (35)

The most used coordinates are conformally-flat ones:

yi =
2wi

1 + w4

= 2 tan χ/2 ni ,

dl2 = R2 (1 +
y2

4
)−2 [dy2

1 + dy2
2 + dy2

3 ] (36)

and quasi-Cartesian ones :

xi =
yi

1− y2/4
= tan χ ni =

wi

w4

, χ ∈ [0, π/2] ; (37)
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the later parameterize only elliptical model (the space of orthogonal group S0(3) )

dS2 = c2dt2 − (
δjk

1 + x2
− xjxk

(1 + x2)2
) dxjdxj ,

gαβ =

∣∣∣∣
1 0
0 gjk

∣∣∣∣ , gjk = −(
δjk

1 + x2
− xjxk

(1 + x2)2
) ,

gαβ =

∣∣∣∣
1 0
0 gkl

∣∣∣∣ , gkl = −(1 + x2)(δkl + xkxl) . (38)

Also calculating the determinant

det (gαβ) =
1

det (gαβ)
, det (gαβ) = −(1 + x2)3

∣∣∣∣∣∣
1 + x1x1 x1x2 x1x3

x2x1 1 + x2x2 x2x3

x3x1 x3x2 1 + x3x3

∣∣∣∣∣∣
=

−(1 + x2)3 [(1 + x1x1)(1 + x2x2)(1 + x3x3) + 2x1x1x2x2x3x3 −
−(1 + x2x2)x1x1x3x3 − (1 + x1x1)x2x2x3x3 − (1 + x3x3)x1x1x2x2] = −(1 + x2)3 , (39)

that is
√
−det (gαβ) =

1

(1 + x2)3/2
. (40)

For effective dielectric tensor εik(x) we have

εik(x) =
√−g g00(x)gik(x) = − 1√

1 + x2
(δik + xixk) =

= − 1√
1 + x2

∣∣∣∣∣∣
1 + x1x1 x1x2 x1x3

x1x2 1 + x2x2 x2x3

x3x1 x3x2 1 + x3x3

∣∣∣∣∣∣
. (41)

For effective magnetic tensor µik(x) we have

µik(x) =
√

1 + x2

∣∣∣∣∣∣
(1 + x2x2 + x3x3) −x1x2 −x1x3

−x2x1 (1 + x3x3 + x1x1) −x2x3

−x3x1 −x3x2 (1 + x1x1 + x2x2)

∣∣∣∣∣∣
(42)

It is easily verified by direct calculation that (taken with minus ) dielectric tensor (−εik(x))
and tensor µik(x) are inverse to each other

−εik(x) µkl(x) = δik . (43)

Let us write down the effective material equations explicitly

Di = ε0ε
ikEk , H i =

1

µ0

µikBk, Bi = µ0M
ikHk ; (44)

at this two matrices coincide

−εik(x) = M ik(x) =
1√

1 + x2

∣∣∣∣∣∣
1 + x1x1 x1x2 x1x3

x1x2 1 + x2x2 x2x3

x3x1 x3x2 1 + x3x3 ,

∣∣∣∣∣∣
(45)
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8. Effective material equations generated by Lobachevsky geom-
etry of a space of constant negative curvature

A 3-dimensional space of constant negative curvature, H3, has many applications in physical
problems. The most simple realization of this model is given by three-sphere in 4-space (the
space of the unitary group SU(1.1)):

W 2
4 −W 2

1 −W 2
2 −W 2

3 = R2 , w1 =
W1

R
, and so on ; (46)

R is a curvature radius. These four coordinate are connected with quasi-spherical ones be
relations:

w4 = cosh χ, wi = sinh χ ni , ni = (sin θ cos φ, sin θ sin φ, sin θ) , χ ∈ [0, +∞) . (47)

The most used coordinates are conformally-flat ones:

yi =
2wi

1 + w4

= 2 tanh χ/2 ni ,

dl2 = R2 (1− y2

4
)−2 [dy2

1 + dy2
2 + dy2

3 ] (48)

quasi-Cartesian ones :

xi =
yi

1 + y2/4
= tanh χ ni =

wi

w4

, χ ∈ [0, π/2] ; (49)

the later parameterize only elliptical model (the space of orthogonal group S0(3) )

dS2 = c2dt2 − (
δjk

1− x2
+

xjxk

(1− x2)2
) dxjdxj ,

gαβ =

∣∣∣∣
1 0
0 gjk

∣∣∣∣ , gjk = −(
δjk

1− x2
+

xjxk

(1− x2)2
) ,

gαβ =

∣∣∣∣
1 0
0 gkl

∣∣∣∣ , gkl = −(1− x2)(δkl − xkxl) . (50)

Also calculating the determinant

det (gαβ) =
1

det (gαβ)
, det (gαβ) = −(1− x2)3 , (51)

that is
√
−det (gαβ) =

1

(1− x2)3/2
. (52)

For effective dielectric tensor εik(x) we have

εik(x) =
√−g g00(x)gik(x) = − 1√

1− x2
(δik − xixk =

= − 1√
1− x2

∣∣∣∣∣∣
1− x1x1 −x1x2 −x1x3

−x1x2 1− x2x2 −x2x3

−x3x1 −x3x2 1− x3x3

∣∣∣∣∣∣
. (53)
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For effective magnetic tensor µik(x) we have

µik(x) =
√−g

∣∣∣∣∣∣
(g22g33 − g23g32) (g31g23 − g21g33) (g21g32 − g22g31)
(g32g13 − g33g12) (g33g11 − g31g13) (g31g12 − g32g11)
(g12g23 − g13g22) (g13g21 − g11g23) (g11g22 − g12g21)

∣∣∣∣∣∣
=

=
√

1− x2

∣∣∣∣∣∣
(1− x2x2 − x3x3) x1x2 x1x3

x2x1 (1− x3x3 − x1x1) x2x3

x3x1 x3x2 (1− x1x1 − x2x2)

∣∣∣∣∣∣
(54)

It is easily verified by direct calculation that (taken with minus ) dielectric tensor (−εik(x))
and tensor µik(x) are inverse to each other

−εik(x) µkl(x) = δik . (55)

Let us write down the effective material equations explicitly

Di = ε0ε
ikEk , H i =

1

µ0

µikBk, Bi = µ0M
ikHk ; (56)

at this two matrices coincide

−εik(x) = M ik(x) =
1√

1− x2

∣∣∣∣∣∣
1− x1x1 −x1x2 −x1x3

−x1x2 1− x2x2 −x2x3

−x3x1 −x3x2 1− x3x3 ,

∣∣∣∣∣∣
. (57)

9. Geometry effect on material equations in media

Above, we have started with Maxwell equations in vacuum:

∂aFbc + ∂bFca + ∂cFab = 0 ,

∂bH
ba = ja , Hab = ε0 Fab (58)

and changed them to generally covariant in Riemannian space-time

∂αFβγ + ∂βFγα + ∂γFαβ = 0 ,
1√−g

∂β

√−g Hβα = jα . (59)

At this, vacuum material equations

Hαβ = ε0 Fαβ, (60)

due to presence of metrical tensor gρα(x) gave us the modified (effective) material equations

Hρσ(x) =
√−g gρα(x)gσβ(x) ε0 Fαβ(x) . (61)

As a first generalization let us start with Maxwell equations in a uniform media:

∂aFbc + ∂bFca + ∂cFab = 0 , ∂bH
ba = ja , (62)

Hmn = ε0 η a
m η b

n Fab, η a
m =

√
ε

∣∣∣∣∣∣∣

k−1 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k

∣∣∣∣∣∣∣
, k2 =

1

εµ
. (63)
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Extension of these to Riemannian space-time looks as

∂αFβγ + ∂βFγα + ∂γFαβ = 0 ,
1√−g

∂β

√−g Hβα = jα , (64)

At this, material equations for the uniform media

Hαβ(x) = ε0 η a
α η b

β Fab(x) , η a
α =

√
ε

∣∣∣∣∣∣∣

k−1 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k

∣∣∣∣∣∣∣
. (65)

will take the form

Hρσ(x)(x) =
√−g gρα(x)gσβ(x) Hαβ(x) =

=
√−g gρα(x)gσβ(x) ε0 η a

α η b
β Fab(x) . (66)

With the notation

F̂αβ(x) = η a
α η b

β Fab(x) ;

they are written as follows

Hρσ(x)(x) =
√−g gρα(x)gσβ(x) ε0 F̂αβ(x) . . (67)

where explicit form of F̂αβ(x) is

F̂αβ(x) =

∣∣∣∣
0 εF0i

εFi0 µ−1Fik

∣∣∣∣ . (68)

One should not make any additional calculation, instead it suffices the make one formal
change Fαβ(x) =⇒ F̂αβ(x), and now material equations are

Di = ε0ε εik(x) Ek + ε0εc αik(x) Bk ,

H i = ε0εc βik(x) Ek +
1

µ0µ
µik(x) Bk . (69)

These relations provide us with material equations for uniform media modified by Rieman-
nian geometry of background space-time.

It is easily to make one other extension: let us start with anisotropic media in Minkowski
space

Di = ε0 ε
(0)
kl El , Hi =

1

µ0

µ
(0)
kl Bk . (70)

they will be modified into

Di = ε0 [εik(x) ε
(0)
kl ] El + ε0c [αik(x) µ

(0)
kl ] Bl ,

H i = ε0c [βik(x)(ε
(0)
kl ] El +

1

µ0

[µik(x)(µ
(0)
kl ] Bl . (71)

And now, final extension: let start with arbitrary (linear) media when material equations
are determined by 4-rank tensor

Hαβ(x) = ε0 ∆ ab
αβ Fab(x) (72)
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from which Riemannian geometry will generate the following ones

Hρσ(x)(x) =
√−g gρα(x)gσβ(x) ε0 ∆ ab

αβ Fab(x) . (73)

or in 3-dimensional form

Di = ε0 εik(x)
[
ε
(0)
kl El + cα

(0)
kl Bl

]
+ ε0 αik(x)

[
β

(0)
kl El + µ

(0)
kl c Bl

]
,

H i = ε0c βik(x)
[
ε
(0)
kl El + cα

(0)
kl Bl

]
+ ε0c µik(x)

[
β

(0)
kl El + µ

(0)
kl c Bl

]
; (74)

these may be rewritten differently

Di = ε0

[
εik(x) ε

(0)
kl + αik(x)β

(0)
kl

]
El + ε0c

[
εik(x)α

(0)
kl + αik(x)µ

(0)
kl

]
Bl ,

H i = ε0c
[
βik(x)ε

(0)
kl + µik(x)β

(0)
kl

]
El +

1

µ0

[
βik(x)α

(0)
kl + µik(x)µ

(0)
kl

]
Bl ,

or in matrix form (with no indices)

D = ε0

[
ε(x) ε(0) + α(x)β(0)

]
E + ε0c

[
ε(x)α(0) + α(x)µ(0)

]
B ,

H = ε0c
[
β(x)ε(0) + µ(x)β(0)

]
E +

1

µ0

[
β(x)α(0) + µ(x)µ(0)

]
B . (75)

These formulas can be read symbolically:

ε0 =⇒ ε̂ = ε(x) ε(0) + α(x)β(0), α0 =⇒ α̂ = ε(x)α(0) + α(x)µ(0) ,

β0 =⇒ β̂ = β(x)ε(0) + µ(x)β(0) , µ0 =⇒ µ̂ = βα(0) + µ(x)µ(0) . (76)

For instance, if starting material equations have only diagonal blocks, that is α0 = 0, β0 = 0,
last relations become simpler:

ε0 =⇒ ε̂ = ε(x) ε(0), α0 = 0 =⇒ α̂ = +α(x)µ(0) ,

β0 = 0 =⇒ β̂ = β(x)ε(0) , µ0 =⇒ µ̂ = µ(x)µ(0) . (77)

Four (material) tensor in the above formulas are defined by
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