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Quaternion formulation of nonlinear equations
of the non-commutative electrodynamics
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The Lorenz covariant biquaternion formulation of the nonlinear equations of non-
commutative electrodynamics is constructed. That opens an opportunity for dimen-
sional reduction of obtained system.
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As is known, interest to models with non-commuting space-time coordinates has obtained
a new impulse after occurrence of work by E. Witten and N. Seiberg [1] who have opened an
opportunity of comparison to corresponding equations of their nonlinear analogues in usual
space-time. Within the framework of such approach, electrodynamics without sources has been
constructed in [2] whose equations possess, in opinion of authors, the property of the generalized
dual invariance. As the considered equations look as system of the equations of classical macro-
scopical electrodynamics with the nonlinear material equations determined by antisymmetric
non-commutative tensor of coordinates, it is pertinent to take advantage of a biquaternionic
formalism to demonstrate symmetry properties of the equations [3]. Besides, the biquaternion
formulation will allow using to the full advantages the Fedorov vector parameterization of the
Lorenz group [4] and will open opportunities for direct use of covariant methods [5] to compute
non-commutativity effects in optical processes.

As has been shown in work [2], the non-commutative generalization of usual Maxwell-
Lagrange density

L = −1

4
F̂µν ∗ F̂ µν

involves the star product of the non-commutative field strength F̂µν obtained from the potential

Âµ as

F̂ µν = ∂µÂν − ∂νÂµ − ig
(
Âµ ∗ Âν − Âν ∗ Âµ

)
,

where g = e
~cand the star product is defined by (f ∗ g) (x) = e

1
2
θαβ∂α∂

′
βf (x) g (x′) |x=x′ .

After the Witten–Seiberg transformation, it is possible to obtain equations of Maxwell
macroscopical electrodynamics

1

c

∂

∂t
B + [∇E] = 0, (∇B) = 0 (1)

1

c

∂

∂t
D − [∇H] = 0, (∇D) = 0, (2)

with the nonlinear material equations
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D = E − ((θB)− (εE)) E + ((θE) + (εB)) B + (EB) θ +
1

2

(
E2 −B2

)
ε (3)

H = B − ((θB)− (εE)) B + ((θE) + (εB)) E − (EB) ε +
1

2

(
E2 −B2

)
θ (4)

where E and B are electric and magnetic field, and D and H determine inductions of these
fields respectively. Non-commutativity of space-time coordinates is determined by some anti-
symmetric second rank tensor θµν satisfying the condition [xµxν ] = iθµν . Thus ε and θ are
determined from the conditions:

εi = θ0i, θi =
1

2
ξijkθjk.

Dual transformations for the equations (1-4) can be carried out by the replacements

E → −H,B → D,D → −B,H → E, ε → −θ, θ → −ε. (5)

Let us present now the equation (1-4) with the help of biquaternions. Recall for this purpose
that any element of algebra of biquaternions in ”vector” basis can be written as

q = q0 + q = q0e0 + qana = qs + q
v
,

where nae0 = e0na = na , e2
0 = 1 , (nanb) = δabnanb , [nanb] = εabcnc , a, b, c = 1, 2, 3 , e0 and

na are arbitrary generations elements of the quaternion algebra, and q0 , qa are elements of a
field of complex numbers. Whence the law of multiplication of biquaternions in the vector form
follows:

qp = q0p0 − (qp) + q0p + p0q + [qp].

For the biquaternions operations of complex conjugation q∗ = q∗0 − q∗ and quaternion con-
jugation q̄ = q0 − q are determined. The first operation is the automorphism, while the second
one is the anti-automorphism of the biquaternion algebra pq = q̄ · p̄ .

In biquaternions the equations (1-4) is possible to present as

∇ (B − iE)−∇ (B − iE)∗ = 0, ∇ (H − iD) +∇ (H − iD)∗ = 0 (6)

with the nonlinear material equations

B − iE = H − iD + [(H + iD) (θ + iε)]s (H − iD) +
1

2
(H + iD)2

s (θ − iε) (7)

or

H − iD = B − iE − [(B + iE) (θ + iε)]s (B − iE)− 1

2
(B + iE)2

s (θ − iε) . (8)

To study the dual symmetry of the obtained equations it is necessary to present the equations
(8-9) through pairs (H − iE) , (B − iD) . For the equations (8) it is possible to write down:

∇ [(B ∓ iD)± (H ∓ iE)]− [(B ∓ iD)∓ (H ∓ iE)]∇ = 0. (9)

For the equations of binding constraint (7) or (8) it is useful to sum them, since the equations
are invariant with respect to the replacements (5):

[((H − iE)− (B − iD)) (θ + iε)] (H − iE)+ [((H + iE) + (B + iD)) (θ + iε)] (H + iE)
+ [((H − iE)− (B − iD)) (θ + iε)] (B − iD)− [((H + iE) + (B + iD)) (θ + iε)] (B + iD)
= [((H − iE)− (B − iD)) ((H + iE) + (B + iD))] (θ − iε) .

(10)

124



Quaternion formulation of nonlinear equations of the non-commutative electrodynamics

If to assume, that at dual turns (θ − iε) it is multiplied on exp [−iθ] the constraint equa-
tion (10) supposes only the discrete dual transformations of a kind exp [iπ/2] equivalent (5).
Thus, there is remain in force E. Schrödinger’s statement that there are only two electrodynam-
ics invariant simultaneously concerning Lorenz’s transformations and continuous dual turns -
Maxwell electrodynamics and Born-Infeld electrodynamics.

The biquaternion formulation of the nonlinear equations of the non-commutative electro-
dynamics constructed here opens an opportunity for application of the advanced technique
of a reduction to space-time of smaller dimensions [6, 7]. Thus significant interest represents
research of a question on equivalence of nonlinearity of the systems obtained in this way and
non-commutative coordinates in R(2.1) and R(1.1).
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