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Geometrical approach for description
of the mixed state in multi-well potentials.
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We use so-called geometrical approach [1] in description of transition from reg-
ular motion to chaotic in Hamiltonian systems with potential energy surface that
has several local minima. Distinctive feature of such systems is coexistence of dif-
ferent types of dynamics (regular or chaotic) in different wells at the same energy
[2]. Mixed state reveals unique opportunities in research of quantum manifesta-
tions of classical stochasticity [3]. Application of traditional criteria for transition to
chaos (resonance overlap criterion, negative curvature criterion and stochastic layer
destruction criterion) is inefficient in case of potentials with complex topology. Ge-
ometrical approach allows considering only configuration space but not phase space
when investigating stability. Trajectories are viewed as geodesics of configuration
space equipped with suitable metric. In this approach all information about chaos
and regularity consists in potential function. The aim of this work is to determine
what details of geometry of potential lead to chaos in Hamiltonian systems using
geometrical approach. Numerical calculations are executed for potentials that are
relevant with lowest umbilical catastrophes.
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1. Mixed state. Phenomenological description.

Hamiltonian system with multi-well potential energy surface(PES) represents a realistic
model, describing the dynamics of transition between different equilibrium states, including
such important cases as chemical reactions, nuclear fission and phase transitions. It became
known in 80-th that existence of mixed state is an important feature of such systems [2]. Mixed
state means that there are different dynamical regimes in different local minima at the same
energy, either regular, or chaotic. For example lets demonstrate an existence of mixed state for
nuclear quadrupole oscillations Hamiltonian. It can be shown that using only transformation
properties of the interaction the deformation potential of surface quadrupole oscillations of
nuclei takes on the form [4]:

U(a0, a2) =
∑
m,n

Cmn(a2
0 + 2a2

2)
man

0 (6a2
2 − a2

0)
n (1)

where a0 and a2 are internal coordinates of the nuclear surface during the quadrupole oscilla-
tions:

R(θ, ϕ) = R0{1 + a0Y2,0(θ, ϕ) + a2[Y2,2(θ, ϕ) + Y2,−2(θ, ϕ)]} (2)
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Constants Cmn can be considered as phenomenological parameters. Restricting with the
members of the fourth degree in the deformation and assuming the equality of mass parameters
for two independent directions, we get C3v-symmetric Hamiltonian:

H = (p2
x + p2

y)/2m + UQO(x, y; a, b, c) (3)

where
UQO(x, y; a, b, c) = a

2
(x2 + y2) + b(x2y − 1

3
y3) + c(x2 + y2)2

x =
√

2a2, y = a0, a = 2C10, b = 3C01, c = C20
(4)

Hamiltonian (3) and corresponding equations of motion depend only on parameter W = b2/ac,
the unique dimensionless quantity we can build from parameters a, b, c. The same parameter
determines the geometry of PES. Interval 0 < W < 16 includes potentials with single extremum
minimum in the origin that corresponds to spherical symmetric shape of the nucleus. In the
interval W > 16 PES UQO contains seven extremums: four minima (central, placed in the
origin and three peripheral, which correspond to deformated states of nuclei) and three saddles,
which separate peripheral minima from central one. The distinctive feature of transition from
regularity to chaos in such a potential lies in the fact that energy of transition is not the same in
different local minima. Thus, Ecr ∼ Es/2 (Es - energy in the saddles) for the central minimum
and Ecr ∼ Es for peripheral. Due to this in the interval Es/2 < E < Es classical dynamics
is mainly chaotic in the central minimum and remains regular in peripheral minima (Fig. 2,
right). Term mixed state is used for designation of such specific dynamics.

Mixed state is natural for multi-well potentials. This statement is illustrated by Fig. 2 (left
and center), which represents level lines and Poincare sections in different energies for multi-well
potentials from family of umbilical catastrophes D5 and D7:

UD5 = 2y2 − x2 + xy2 + 1
4
x4

UD7 =
√

2y2 + 3
8
x2 + xy2 − 1

2
x4 + 1

6
x6 (5)

One can see that there exists chaos in wells with three saddles, while in other wells motion
is regular. Lets note the distinction of sections structure in different wells. In the low energy
there exists a hyperbolic point in the section for wells with chaotic motion. At the same time
there is no such a point in the regular wells and structure of sections is similar at the different
energies.

2. Importance of the mixed state for quantum chaos.

FIG. 1. Wave function structure
in D5 potential

The mixed state represents optimal object for investigation
of quantum manifestations of classical stochasticity (QMCS)
in wave function structure. Indeed, usual procedure of search
for QMCS in wave functions implies distinction in its structure
below and above classical critical energy (or other parameters
of regularity-chaos transition). However, such procedure meets
difficulties connected with necessity to separate QMCS from
modifications of wave functions structure due to trivial changes
of its quantum numbers. Wave functions of the mixed state
allow finding QMCS in comparison not different eigenfunctions,
but different parts of the same eigenfunction, suited in different
regions of configuration space (different local minima of the
potential). By way of example, comparing the structure of
the eigenfunctions in central and peripheral minima of the QO
potential or in left and right minima of the D5, it is evident
that nodal structure of the regular and chaotic parts is clearly different, but correlating with
the character of the classical motion (see Fig. 1).
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3. Stochastic criteria for mixed state.

As well known [5], stochasticity is understood as a rise of statistical properties in purely
deterministic system due to local instability. According to this idea values of parameters of dy-
namical system, under which local instability arises, are identified as regularity-chaos transition
values. However, stochasticity criteria of such a type are not sufficient (their necessity offer a
separate and complicated question), since loss of stability could lead to transformation of one
kind of regular motion to another one. Although this serious limitation, stochastic criteria in
combination with numerical experiments facilitate an analysis of motion and essentially extend
efficacy of numerical calculations.

First among widely used stochasticity criteria is nonlinear resonances overlap criterion pre-
sented by Chirikov [6]. According to this criterion rise of local instability is generated by contact
of separatrixes of neighboring nonlinear resonances. In this approach the scenario of stochas-
ticity is the following. The averaged motion of the system in the neighborhood of the isolated
nonlinear resonance on the plane of the action-angle variables is similar to the particle behavior
in the potential well. Several resonances correspond to several potential wells. The overlap of
the resonances is responsible for the possibility of the random walk of particle between these
wells. This method could be modified for the systems with unique resonance [7]. In this case
the origin of the large-scale stochasticity is connected with the destruction of the stochastic
layer near the separatrix of the isolated resonance.

Application of these criteria in presence of strong nonlinearity (which is inevitable when
considering multi-well potentials) encounters an obstacle: action-angle variables effectively work
only in neighborhood of local minimum. Because of this, an interest to methods, based on direct
estimation of trajectories moving away speed, arises. The criterion of such a type is so-called
negative curvature criterion (NCC) [8]. This criterion connects stochastisation of motion with
getting to part of configuration space, where Gaussian curvature of PES is negative when
energy increases (while in neighborhood of minima curvature is always positive). Then energy
of transition to chaos is close to minimal energy on the zero-curvature line. Negative curvature
criterion allows getting a number of interesting results both for classical motion and QMCS
in potentials with simple geometry a single minimum [3]. However, when passing on to the
multi-well potentials, NCC fails to work correct. In particular, for above mentioned potentials
(D5 and D7), structure of Gaussian curvature is similar in different wells. For example, for D5

potential according to NCC we get the same value of critical energy for both minima: −5/9, but
chaotic motion is only observed in the left well (Fig. 2, left). A natural question immediately
arises: is it possible, using only geometrical properties of PES but not solving numerically
equations of motion, to formulate an algorithm for finding a critical energy for single local
minima in multi-well potential? We’ll try to answer on this question below in the framework
of geometrical approach.

4. Geometrical approach to Hamiltonian mechanics.

We will use so-called geometrical approach in consideration of mixed state. Lets recall the
basics of this method [1]. It is known that Hamiltonian dynamics could be formulated in the
terms of Riemannian geometry. In this approach trajectories of the system are considered as
geodesics of some manifold. Grounds for such consideration lie in variational base of Hamilto-
nian mechanics. Geodesics are determined by condition:

δ

∫

L

ds = 0 (6)
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FIG. 2. Level lines and Poincare sections for D5(left), D7(center) and QO (right) potentials. Sections are
presented at energies Es/4, Es/2 and Es.

At the same time trajectories of dynamical system are determined according to the Maupertuis
principle:

δ

∫

γ

2Tdt = 0 (7)

(γ - all isoenergetic paths connecting end points) or to the Hamiltons principle:

δ

t2∫

t1

Ldt = 0 (8)
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Once chose a suitable metric action could be rewrote as a length of the curve on the manifold.
Then trajectories will be geodesics on this manifold(configurational - CM). This approach has
an evident advantage: potential energy function includes all information about the system, so
one need to consider only configurational space (CS) but not phase space. Equations of motion
in this case take on the form:

d2qi

ds2
+ Γi

jk

dqj

ds

dqk

ds
= 0 (9)

Christoffel symbols in this approach play as counterparts of forces in ordinary mechanics. The
most natural metric is a Jacobi one. It has the form:

gij = 2[E − V (q)]δij (10)

By means of this metric Maupertuis principle could be rewrote in the form equivalent to con-
dition for geodesics.

Lets consider local instability in the framework of above mentioned geometrical approach.
Let q and q′ be two nearby at the t = 0 trajectories:

q′i(s) = qi(s) + J i(s) (11)

Separation vector
−→
J then satisfy the Jacobi-Levi-Civita equation:

d2J i

ds2
+ Ri

jkl

dqj

ds
Jk dql

ds
= 0 (12)

It can be shown that dynamics of the deviation is determined only by Riemannian curvature
of the manifold. For two-degrees-of-freedom systems Riemannian curvature has a form:

R =
1

4(E − V )2
[2(E − V )∆V + 2 |∇V |2] (13)

Laplasian of V is positive for considered potentials so Riemannian curvature is positive too.
Due to this we couldn’t connect divergence of trajectories with negative Riemannian curvature.
The one way to solve this problem consists in introduction of higher-dimensional (than N)
metrics. Lets examine this question closer. It can be shown that equation for separation vector−→
J could be reformulated in form, which doesn’t depend on dimensionality of manifold:

1

2

d2
∥∥∥ ~J

∥∥∥
2

ds2
+ K(2)( ~J,~v)

∥∥∥ ~J
∥∥∥

2

−
∥∥∥∥
∇
ds

~J

∥∥∥∥
2

= 0 (14)

where K(2) is a sectional curvature in two-dimensional direction:

K(2)( ~J,~v) = Riklm
J i

∥∥∥ ~J
∥∥∥

dqk

ds

J l

∥∥∥ ~J
∥∥∥

dqm

ds
(15)

and
〈

~J,~v
〉

= 0. Note that point where K(2) < 0 is an unstable one. Since there are more than

one sectional curvature for the case N > 2, we could connect instability with negative sign of
some of them. One among the enlarged metrics is an Eisenhart metric. Eisenhart metric is
N +2-dimentional and contains two additional coordinates. One of these coordinates coincides
with a time and second is connected with action. Using Eisenhart metric, quantity K(2) could
be rewrote in the form:

K(2)(~̇q, ~q) =
1

2(E − V )
(
∂2V

∂q2
1

q̇2
2 +

∂2V

∂q2
2

q̇2
1 −2

∂2V

∂q1∂q2

q̇1 q̇2) (16)

Now, investigation of the K(2) structure on the considered manifold could be used for
studying of chaotic regimes and, in particular, the mixed state.
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5. Investigation of mixed state in the framework of geometrical
approach.

As mentioned above, negative sign of K(2) is a condition for rise of local instability. It is
necessary to clarify whether this condition is sufficient for development of chaoticity or not,
clearly speaking, one needs to answer the question, does a presence of negative curvature parts
on CM always lead to chaos. Potentials with mixed state are a very convenient model for
investigation of this question, since there exist both regimes of motion. So, we need to study,
how differs the structure of K(2) in different wells. For that we calculate a part of phase space
with negative curvature as a function of energy, i.e. a volume of phase space where K(2) < 0
referred to the total volume:

µ(E) =

∫
d~qd~pΘ(−K(2))δ(H(~q, ~p)− E)

/∫
d~qd~pδ(H(~q, ~p)− E) (17)

An advantage of this approach consists in necessity to calculate only geometrical properties of
system without solving equations of motion.

FIG. 3. Function µ(E) for D5(a) and D7(b) potentials. µ(E) for chaotic wells are represented by doted lines,
for regular - by triangles.

We carried out calculations for two potentials: D5 and D7. Calculations of µ(E) (Figure 3)
show that there are parts, where K(2) < 0, in all wells, but nevertheless chaos exists only in
one well. Moreover, for well with chaotic motion function µ(E) gives correct value of critical
energy (in the sense, specified in Section 3). In this energy µ becomes positive. Situation with
regular wells is more complex. Although part of phase space, where K(2) < 0, is nonzero, chaos
in the well doesn’t exist. This can be viewed on the Poincare sections. For comparison on the
Fig. 4 part of CS with negative Gaussian curvature is shown. One can see that structure of
negative Gaussian curvature is similar to the K(2)-structure.

6. Conclusions.

Investigation of curvature of manifold, as one can see from the cited above data, doesn’t give
a plain method for identification of chaos in any minimum, especially if there exist both regular
and chaotic regimes of motion. It is impossible to determine a priori whether chaos existed
in the system without using dynamical description (in out case that are Poincare sections).
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FIG. 4: Function µg(E) for D5(a) and D7(b) potentials.

Nevertheless, one can efficiently use geometrical methods for investigation of chaos in multi-
well potentials. In considered above potentials chaos exists only in wells, which have two details:
non-zero part of negative curvature on the manifold and at least one hyperbolic point in the
Poincare section. According to this, one can use the following method for identification of chaos
and calculation of critical energy. At the first step the Poincare section in low energy is drew
for the well and the presence of hyperbolic point is determined. If so, the quantity µ must be
calculated (or the part of CS with negative Gaussian curvature). Value of energy, in which
µ(E) become positive, could be associated with critical energy. If there is no hyperbolic point
in the section than chaos doesn’t exist in the well. Consequently, geometrical methods could
be efficiently used for determination of critical energy in complex potentials and identification
of chaos in general. However, one must carefully use these methods and combine them with
qualitative methods, such as Poincare sectioning method.
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