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An expansion in series over projective
operators for propagator of quasiparticle
excitation in electronic system of crystal
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A technique of projective operators which allows to offer a strict procedure of
construction of Green function in quantum calculations of crystals has been devel-
oped. It was shown that a propagator of quasiparticle excitation in crystal can be
represented as an expansion in series over projective operators.
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1. Introduction

To describe quasiparticle states and physical particles the method of Green functions is
effective. Then, it is necessary to impose gauge conditions rejecting not physical states which
are due to dynamic symmetry of a problem. To avoid this difficulty one can utilize a technique
of projective operators, which project states from a whole space on a subspace of physical
states. As a rule, people restrict consideration by some assumptions. Firstly, one can assume,
that a secondary quantized projector P can be defined on group of internal dynamic or gauge
symmetry, for example, as

P =

∫
exp(−ıθαQ̂α) dU(θα) (1)

Here dU(θα) is a integration measure on a space of group transformations generated by a

quantum current algebra oQ̂α. Secondary, a propagator G of physical particles is considered as
proportional to a projector: G ∼ P .

The goal of the article is to develop a technique of projective operators, which allows to offer
a strict procedure of construction of Green function in quantum calculations of crystals.

2. A method of density matrix in quantum mechanics

In this approach a state of quantum system is described by quantum operator analog ρ̂
of probabilistic distribution function ρ(p, q) determining a state in classical mechanics and
satisfying the following condition

∫
ρ(p, q)dq dp = 1.

This operator is named the matrix of density ρ̂. Since ρ̂ is a quantized distribution function the
operator ρ̂ should be self-conjugeted, positively determined and its trace Tr should be equal to
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unit:

ρ̂† = ρ̂; (2)

(ρ̂ξ, ξ) ≥ 0; (3)

Trρ̂ = 1, (4)

where † is an operation of Hermitian conjugation, (η, ξ) is a scalar product of vectors η, ξ.
Further, we shall show that a projective operator can be used as the density matrix.

Let us define a operator Pη of projection on a normalized vector η, ‖η‖ = 1 by the following
expression

Pηξ = (ξ, η)η, (5)

Since (ξ, η) is a value of projection of a vector ξ on a direction η, the operator Pηξ, really,
determines a component of the vector ξ along a direction η. Now, one can demonstrate that
the operator Pηξ defined by the expression (5) is the projective operator, because the repeated
projecting does not change a value of the projection to the same direction. To show it, we shall
examine the following expression:

P 2
η ξ = (ξ, η)Pηη = (ξ, η) ‖η‖ η. (6)

It follows from the expression (6) that
P 2

η = Pη (7)

i.e. the operator is projective. According to the definition (5) the projective operator Pη holds
the following properties [1]:

(Pηξ, ψ) = (ξ, η)(η, ψ) = (ψ, η)†(ξ, η) = (ξ, Pηψ) ; (8)

(Pηξ, ξ) = (ξ, η)(η, ξ) = |(ξ, η)|2 ≥ 0; (9)

TrPη = (η, η) = 1. (10)

Here ψ is a normalized vector: ‖ψ‖ = 1. The condition (8) signifies that the projector Pη is
self-conjugate. It follows from the condition (9) that it is positively definite. A self-conjugate
and positively definite ρ̂ with trace equal to unity is named the density matrix [1]. Hence the
operator Pη can be used as the density matrix operator ρ̂.

Let ψ be a real normalized vector having n component: (ψ)T = (ψ1, . . . , ψn), ψiψi ≡ ψψ = 1,
where T is a operation of matrix transposition Let us show that the projective operator Pψ can
be represented in the matrix-dyad form: [2]:

Pψ = ψ · ψ ≡




ψ1ψ1 ψ1ψ2 . . . ψ1ψn

ψ2ψ1 ψ2ψ2 . . . ψ2ψn

. . . . . . . . . . . .
ψnψ1 ψnψ2 . . . ψnψn


 . (11)

Indeed, a operator determined in matrix form by the expression (11)is the projector because
P 2

ψ = ψ · ψψ · ψ = Pψ.
Let us generalize the definition (11) on the complex case. Let ψ be a comlex normalized vec-

tor having n component. Let us demonstrate that the projective operator Pψ can be represented
in the complex matrix-dyad form:

Pψ = ψ · ψ∗ ≡




ψ1ψ
∗
1 ψ1ψ

∗
2 . . . ψ1ψ

∗
n

ψ2ψ
∗
1 ψ2ψ

∗
2 . . . ψ2ψ

∗
n

. . . . . . . . . . . .
ψnψ

∗
1 ψnψ∗2 . . . ψnψ∗n


 . (12)
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Here ∗ denotes an operation of complex conjugation, when constructing the matrix-dyad one
supposes that ψ is a column, and ψ∗ is a row. Indeed, the operator Pψ defined in matrix form
by the expression (12) is a projector because

P 2
ψ = ψ · ψ∗ψ · ψ∗ = (ψ, ψ)ψ · ψ∗ = Pψ. (13)

This operator is self-conjugate as P †
ψ = (ψ∗ · ψ)∗ = Pψ. It is easy to verify that it is positively

definite and its trace equals to unity. Hence, Pψ determined by the expression (12) is the
operator of matrix of states density.

In Dirac’s ket(bra)-vector notation the expression (12) is rewritten as

Pψ = ψ · ψ∗ ≡



〈1|ψ〉〈ψ|1〉 〈1|ψ〉〈ψ|2〉 . . . 〈1|ψ〉〈ψ|n〉
〈2|ψ〉〈ψ|1〉 〈2|ψ〉〈ψ|2〉 . . . 〈2|ψ〉〈ψ|n〉

. . . . . . . . . . . .
〈n|ψ〉〈ψ|1〉 〈n|ψ〉〈ψ|2〉 . . . 〈n|ψ〉〈ψ|n〉


 . (14)

It is from here that the matrix representation (14) of operator Pψ can be replaced with the
operator one :

Pψ = |ψ〉〈ψ|. (15)

3. A technique of projective operators in secondary quantized the-
ory

We can formally quantize the expression (15) changing the wave functions ψ on operators ψ̂
by a secondary quantization procedure and obtain

Pψ̂ = |ψ̂〉〈ψ̂|. (16)

Now, we shall look for Pψ̂. Since the projector Pψ̂ is a density matrix, one can find a mean

value Ψ ≡
〈
ψ̂

〉
of the operator ψ̂ by the following formula

Ψ = Tr Pψ̂ψ̂. (17)

Now, we rewrite Eq. (17) in the matrix form as

Ψn′,p =
∑
n,q

(
ψp

n · ψ∗n
′

q

)
ψqn =

∑
n,q

P nn′
pq ψn

q , n′, p being fixed .

Here in the Dirac’s ket(bra)-vector notation the projector P nn′
pq possesses the following form

P nn′
pq = |n; p〉 〈n′; q| , n′, p being fixed .

Let us assume that the vector

|n; q〉 = P nn′
pq u, n′, p being fixed ; u ∈ H

is transformed at a Hilbert space H over a reducible, unitary representation D̂n
x of group G,

x ∈ G having a dimension dn and matrix element Dn
rs(x), r(s) = 1, . . . , dn determined as

D̂n′
x 〈n′; p| =

∑
q,n

Dn
pq(x)

(
P nn′

qp u
)∗

=
∑
q,n

Dn
pq(x)u∗

(
P nn′

pq

)2

, n′, p being fixed ; u∗ ∈ H
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In accordance with a Peter - Weyl theorem [3] functions

√
dnD

n′
ij (x) (18)

produce a complete system of functions:

∫

G

dn

(
Dn′

ij

)†
(x)Dn

kl(x) dx =

{
0 D̂n, D̂n′ ,

δikδjl D̂n ∼= D̂n′ .
(19)

Multiplying the equality (18) by
(
Dn

ps

)†
(x) and taking into account the expression (18) we

get

(
Dn

ps

)†
(x)D̂n′

x u∗
(
P nn′

ps

)∗
=

∑

q,n′′

(
Dn

ps

)†
(x)Dn′′

pq (x)u∗
(
P n′′n′

pq

)2

, n′, p being fixed ; u∗ ∈ H.

Integrating the expression (20) over dx and using orthonormality property (19) of the functions
Dn

ij(x) one obtains a connection of the projective operators with task symmetry:

P nn′
ps = dn

∫

G

(
Dn

ps

)†
(x)D̂n′

x dx, n′, p being fixed . (20)

4. A technique of projective operators in Green function method

Let us prove that taking into account the projector property (7) one can rewrite Eq. (17) as

Ψ = Tr P 2
ψ̂
ψ̂. (21)

Really, in accordance with the definition of projector one has that

Ψn′,p =
(
Tr Pψ̂ψ̂

)n′,p
=

(
Tr(ψ̂, ψ̂)(Pψ̂ψ̂)†

)n′,p

=
∑
q,n

(
ψn′

q , ψn
p

)
ψn

p
†P †

ψn′,q
=

∑
q,n

(
Pψnpψn′q

)†
P †

ψn′q
=

(
Tr P 2

ψ̂
ψ̂

)n′,p
n′, p being fixed ,

which required to be proved.
In matrix notation Eq. (22) is rewritten in the form

Ψn′,p =
(
Tr P 2

ψ̂
ψ̂

)n′,p
=

∑
q,n

(
ψn′

q , ψn
p

)
ψn

p
†P †

ψn′,q
=

∑
q,n

(
ψn′

q , ψn
p

) (
ψn

p , ψn′
q

)
ψq,n′ , n′, p being fixed.(22)

In Dirac’s ket(bra)-vector notation Eq. (22) is rewritten as

Ψn′,p =
∑
q,n

〈p|ψn〉
〈
ψn′|q

〉
ψq,n′ , n′, p being fixed . (23)

We shall normalize Ψn′,p so that a mean energy E = TrPψ̂H per unit volume V = 1 was
exactly equal to an energy quantum of a field which is described by a one-particle Hamiltonian
H. Let us designate the function Ψn′,p normalized in this way by a symbol ψn′

p with fixed p, n′.
Then, under the normalization per unit volume Eq. (23) is rewritten as

ψn′
p =

∑
q,n

〈p|ψn〉
〈
ψn′ |q

〉
ψn′

q , n′, p being fixed . (24)
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The equation allows to clear up physical sense of the operator P nn′
pq . To make it we rewrite

Eq. (24) in the integral form

ψn′(p) =
1

(2π)3

∫
Gn′(p− q)ψn′(q)d~q, n′, p being fixed , (25)

where

Gn′(p− q) =
∑

n

〈p|ψn〉
〈
ψn′|q

〉
=

∑
n

ψn(p)ψ∗n
′
(q). (26)

In virtue of the property (19) the projective operators (20) hold the following property

P nn′
pq ≡ P n

pq 6= 0 n = n′, n′, p being fixed . (27)

Let us suppose that numbers n, n′ enumerate non-equivalent, non-reducible representations
D̂n, D̂n′G. Then, the use of the property (27) allows us to rewrite Eqs. (25, 26) as

ψn′(p) =
1

(2π)3

∫
G(p− q)ψn′(q)d~q, n′, p being fixed, (28)

where

G(p− q) =
∑

n

ψn(p)ψ∗n(q). (29)

It is easy to see that G(p− q) is exactly a propagator or a Green function describing a particle

of quantized field ψ̂, and ψn′
p can be considered as a wave function of this particle.

5. A technique of projective operators in theory of crystal band
structure

Let us introduce Bloch’s functions in the examination to describe electron orbitals of crystal.

Wave functions χn(~k, ~r) of crystal are periodical Bloch’s functions and they can be presented
as

χn(~k, ~r) = χ~k,n(~r) = ei~k~run(~k, ~r) =
1

(2π)3/2
√

N

∑

~Rl

ei~k ~Rlψn(~r − ~Rl), (30)

un(~k, ~r) is a periodical function: un(~k, ~r + ~a) = un(~k, ~r); ~a is a translation vector for crystal
latice, N is a whole number of elementary cells in the crystal, n is a quantum number. The
summation in the expression (30) is performed over radius-vectors ~Rl of lth lattice site, the

wave vector ~k possesses values at a space of reciprocal lattice.
Let us choose the Bloch’s wave function (30) as a wave function for a propagator for an

equation of motion . Its normalization is so that a mean energy of state χn(~k, ~r) is precisely
equal to an energy Ei of one-particle state. Hence, the propagator for the equation of motion
is a one-particle propagator for a quasiparticle exitation of electronic state in crystal. The use
of Bloch’s functions as wave functions allows to represent a scalar product as the integral over
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Wigner - Seitz (WS) cell:
〈
p
∣∣∣χn′(~k, ~r)

〉
≡

〈
p, n′′

∣∣∣χn′(~k, ~r)
〉

=

∫
e−i~p~ru∗n′′(~p, ~r)χ~k,n′(~r)d~r =

1√
N

∑

~Rl

e−i~p~Rl

∫
d~r

WS
e−i~p~r

WS

×u∗n′′(~p, ~rWS
)
∑

~Rn

ei~k ~Rnψn′(~r − ~Rn)

=
1√
N

∑

~Rl

e−i(~p−~k)~Rl

∑

~Rn

ei~k ~Rn

∫
d~r

WS
e−i~p~r

WS u∗n′′(~p, ~rWS
)ψn′(~rWS

− ~Rn)

=
1√
N

δ(~p− ~k)
∑

~Rn

ei~k ~Rn

∫
d~r

WS
e−i~p~r

WS u∗n′′(~p, ~rWS
)ψn′(~rWS

− ~Rn)

=

∫
d~r

WS
e−i~p~r

WS u∗n′′(~p, ~rWS
)χn′(~p, ~rWS

) =

∫
d~r

WS
u∗n′′(~p, ~rWS

)un′(~p, ~rWS
),(31)

where ~r
WS

is a vector inside the WS cell and integration is performed within the limit of WS
cell, ∗ is the operation of Hermitian conjugation, n′, n′′ are quantum numbers.

Further we shall handle with Laplace-images of Green functions. To calculate a perturbed
Green function, it is necessary to find a Green function G

0

1 of free particle and a self-energy
Σ of particle. According to the expression (26) obtained the frequency dependent free particle
Green function (Laplace-image) for real frequencies ω has the form

G
(n)0

1 (p, ω) =
∑

n′

∫
dt e−i~ωt < p, n′|χn′(1) > eiEn′ t < χn(2)|p, n′ > e−iEnt

= 2π
∑
En′

δ(En′ − En + ~ω)

∫
d~r

WS
u∗p,n′(~rWS

)up,n′(~rWS
)

∫
d~r

WS
u∗p,n(~r

WS
)up,n′(~rWS

). (32)

Let us redefine an one-particle Green function Ĝ1 in following way:

G1(p, ω) = i(G1(p, ω + iε)−G1(p, ω − iε)). (33)

Let us prove that the expression (33) is a causal Green function.
Using Sohotsky formula

δ(ω) = ∓ 1

iπ

1

ω ± iε
+ P

1

ω

the last expression for the causal Green function can be transformed to the form

G
(n)0

1 (p, ω) = 4
∑
En′

1

En − En′ − ~ω − iε

∫
d~r

WS
u∗p,n′(~rWS

)up,n′(~rWS
)

∫
d~r

WS
u∗p,n(~r

WS
)up,n′(~rWS

).(34)

Analytic continuation to a whole complex plane gives the final expression for the free particle
Green function for a complex frequency z

G
(n)0

1 (p, z) = 4
∑
En′

∫
d(~ω + iε)

2πi

1

En − En′ − ~ω − iε

1

z − ~ω − iε

∫
d~r

WS
u∗p,n′(~rWS

)up,n′(~rWS
)

×
∫

d~r
WS

u∗p,n(~r
WS

)up,n′(~rWS
) = 4

∑
En′

1

En − En′ − ~z

×
∫

d~r
WS

u∗p,n(~r
WS

)up,n′(~rWS
)

∫
d~r

WS
u∗p,n′(~rWS

)up,n′(~rWS
).(35)
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The resulting expression has a known form for one-particle causal Green function as the matrix
element of the operator

Ĝ1(z) =
1̂

z − Ĥ
(36)

which, in our case is rewritten as

Ĝ1(En − z) =
∑

n′

|p, n′〉〈p, n′|
(En − z)− En′

. (37)

The index n in the expression (37) is named a band index.

6. Conclusion

Within the technique of projective operators we have offered the strict procedure which
allows to construct the propagator of quasiparticle exitation of electronic states in a crystal.
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