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Solving a relativistic quasipotential equation
for a sum of a nonlocal separable interactions

Yu. D. Chernichenko∗

Pavel Sukhoy Gomel State Technical University,
246746 Gomel, Belarus

Solving of the finite-difference quasipotential equation involving a total quasipo-
tential simulating the interaction of two relativistic spinless particles of unequal
masses is obtained. The total interaction consisting of the superposition of a lo-
cal and a sum of a nonlocal separable quasipotentials is the spherically symmetric
quasipotential and it admits one true bound state. The problem is investigated
within the relativistic quasipotential approach to quantum field theory. Explicit ex-
pressions are ob-
tained for the additions of the phase shift and their properties are investigated, the
conditions under which bound states may exist are determined and the Levinson
theorem is generalized.
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1. INTRODUCTION

The main advantage of nonlocal separable potentials is that the partial-wave t-matrix for
such potentials has a very simple form, and this makes it possible to continue it directly off
the energy shell. Just this property is of paramount importance in nuclear physics and in
a many-body problems. In particular, nonlocal separable interactions were used in solving
Faddeev equations to the three-body problem. This approach also proved to be fruitful in
solving the nonrelativistic inverse problem [1–5]. However, it cannot be applied to essentially
relativistic systems [6, 7]. For example, for systems consisting of light quarks, the contribution
of relativistic corrections to the interaction Hamiltonian appears to be comparable with the
main nonrelativistic term.

The quasipotential approach [8] has still remained one, of the efficient methods for a rela-
tivistic description of two-body systems [9–12]. In the present study, the problem of solving
the finite-difference quasipotential equation with a total quasipotential is considered within the
relativistic quasipotential approach to quantum field theory [13]. The total quasipotential sim-
ulating the interaction between two relativistic spinless particles of unequal masses (m1 6= m2)
is the superposition of a local and a sum of a nonlocal separable quasipotentials. Besides, we
will consider that the total interaction admits the existence of one true bound state and it’s
the local part w(ρ) is known and is in accord with experimental data at low energies. Restrict-
ing our consideration to the case of spherically symmetric forces, we therefore take the total
interaction in the form
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V (~ρ, ~ρ′; Eq′) ≡ V (~ρ, ~ρ′) = w (ρ) δ (~ρ′ − ~ρ) +
∞∑

l=0

Ml∑
m=1

(2l + 1) εlmυlm (ρ) υlm (ρ′) Pl

(
~ρ · ~ρ′
ρρ′

)
, (1)

where Pl (z) is a Legendre function of the first kind; ρ = |~ρ|, ρ′ = |~ρ′|; and εlm = ±1. In the
system of units where ~ = c = 1, the relativistic analog of the differential Schrödinger equation
for the wave function Ψq′ (~ρ) in the configuration representation for particles of unequal masses
with a quasipotential (1) is then given by [14]

m′2

µ

[
cosh

(
iλ′

∂

∂ρ

)
+

iλ′

ρ
sinh

(
iλ′

∂

∂ρ

)
− λ′2

2ρ2
∆θ,ϕ exp

(
iλ′

∂

∂ρ

)
− cosh χ′

]
Ψq′ (~ρ) + (2)

+

∫
d~ρ′V (~ρ, ~ρ′) Ψq′ (~ρ

′) = 0,

where ∆θ,ϕ is the angular part of the Laplace operator, λ′ = 1/m′ is the Compton wavelength
connected with the effective relativistic particle of mass m′ =

√
m1m2, and µ = m′2/ (m1 + m2).

We note that, within of the given approach Eq.(2) describes scattering of an effective rel-
ativistic particle of a mass m′ having a relative 3-momentum ~q′ and the total particle energy√

Sq′ in the c.m. frame being proportional to the energy Eq′ of the effective relativistic particle
of mass m′ [14], that is

√
Sq′ = (m′/µ) Eq′ , Eq′ =

√
m′2 + ~q′2 = m′ cosh χ′, (3)

where χ′ is the rapidity of the effective particle.
Following [15], we expand the wave function Ψq′(~ρ) in partial waves as

Ψq′ (~ρ) =
∞∑

l=0

(2l + 1) il
ψl (ρ, χ′)

ρ
Pl

(
~q′ · ~ρ
q′ρ

)
, q′ = |~q′|.

Equation (2) can then be recast into the form

[
∇+

(
1 +

l (l + 1)

r(2)

)
∇∗ − 2 cosh χ′ + W (r)

]
ψl (r, χ

′) + (4)

+

Ml∑
m=1

εlmVlm (r)

∞∫

0

dr′Vlm (r′) ψl (r
′, χ′) = 0,

where ∇ = exp (−id/dr) , ∇∗ = exp (id/dr) , Vlm (r) =
√

8πλ′µ/m′2ρυlm (ρ),

r(2) = r(r + i), W (r) = 2µw (ρ) /m′2, ρ = λ′r, ρ′ = λ′r′.

Thus, the possibility of representing the total energy of two relativistic spinless particles of
unequal masses in the c.m. frame as a quantity that is proportional to the energy of one effective
relativistic particle of mass m′ enables us to reduce, within this approach, the relativistic
problem of two bodies having unequal masses to a one-body problem.

The present study is devoted to solving Eq.(4) with the boundary condition

ψl (0, χ
′) = 0, (5)

to obtaining the expression for the additions of the phase shift to investigating the conditions
of existence bound states and to generalizing the Levinson theorem for a superposition of a
local and a sum of a nonlocal separable quasipotentials. Besides, we will consider that the total
interaction admits the existence of the only true bound state.
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2. Wave function and the additions of the phase shift

In order that a unique solution to Eq.(4) with the boundary condition in (5) to have, the
local quasipotential W (r) and the components Vlm(r) of the nonlocal separable quasipotential
must satisfy the conditions

rW (r) ∈ L1 (0,∞) , rVlm (r) ∈ L1 (0,∞) , m = 1, 2, ..., Ml. (6)

This means that the regular solution ϕl(r, χ
′) of Eq.(4) at εlm ≡ 0 with the boundary condition

ϕl(0, χ
′) = 0 in the case where the local quasipotential W (r) not admits the existence of bound

states, will satisfy the orthogonality and completeness properties [16]

∞∫

0

drϕl(r, χ)ϕ∗l (r, χ
′) =

δ(cosh χ− cosh χ′)
dρl(cosh χ)/d(cosh χ)

,

∞∫

1

dρl(cosh χ)ϕl(r, χ)ϕ∗l (r
′, χ) = δ(r′−r), (7)

where the spectral density is in this case given by

dρl(cosh χ)/d(cosh χ) = sinh−1(χ)τl(χ), τl(χ) = (2/π)Q2
l (coth χ)

∣∣FW
l (χ)

∣∣−2
, (8)

E = Eq/m
′ = cosh χ ≥ 1.

Here, Ql(z) is a Legendre function of the second kind, and FW
l (χ) is the Jost function for the

local quasipotential W (r) and is related to the corresponding phase shift δW
l (χ) by the equation

FW
l (χ) =

∣∣FW
l (χ)

∣∣ exp
[−iδW

l (χ)
]
.

The solution to Eq.(4) with the boundary condition in (5) will search by means of the
iterations by using the integral transformation of the wave function defined by the wave-function
of the proceding step. We consider on the first step of iteration the superposition of W (r)

and εl1Vl1(r)Vl1(r
′). It follows that we must find the solution ψ

(1)
l (r, χ′) to Eq.(4) at n = 1

satisfying the boundary condition in the form of (5). The properties (7) permit us to introduce
the relativistic integral transformations

ψ̃
(1)
l (χ′, χ) =

∞∫

0

drψ
(1)
l (r, χ′)ψ(0)∗

l (r, χ), Ṽ
(0)
l1 (χ) =

∞∫

0

drVl1(r)ψ
(0)∗
l (r, χ), (9)

ψ
(1)
l (r, χ′) =

∞∫

1

dρ
(0)
l (cosh χ)ψ̃

(1)
l (χ′, χ)ψ

(0)
l (r, χ), Vl1(r) =

∞∫

1

dρ
(0)
l (cosh χ)Ṽ

(0)
l1 (χ)ψ

(0)
l (r, χ),

where dρ
(0)
l (cosh χ)/d(cosh χ) ≡ dρl(cosh χ)/d(cosh χ), and the function ψ

(0)
l (r, χ) ≡ ϕl(r, χ)

satisfies the properties (7). Using the results of article [16] we should then have

ψ
(1)
l (r, χ′) = ψ

(0)
l (r, χ′) +

1

2
εl1Nl1(χ

′)P

∞∫

1

dρ
(0)
l (cosh χ)

Ṽ
(0)
l1 (χ)ψ

(0)
l (r, χ)

cosh χ′ − cosh χ
, (10)

Nl1(χ
′) = εl1Ṽ

(0)∗
l1 (χ′)/Φl1(cosh χ′) , tan δVl1

l (χ′) = −(π/2)εl1 sinh−1(χ′)Al1(χ
′)/Φl1(cosh χ′),
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Φl1(cosh χ′) = εl1 +
1

2
P

∞∫

0

dχ
|Al1(χ)|

cosh χ− cosh χ′
, Al1(χ

′) = εl1τl(χ
′)

∣∣∣Ṽ (0)
l1 (χ′)

∣∣∣
2

,

where P means the principal value. Besides, the asymptotic behaviour of the wave function

ψ
(1)
l (r, χ′) is

ψ
(1)
l (r, χ′) =

∣∣FW
l (χ′)

∣∣
Ql(coth χ′)

[
cos δVl1

l (χ′)
]−1

sin

[
rχ′ − πl

2
+ δ

(1)
l (χ′)

]
+ O

(
e−πr/4

)
,

r →∞.

(11)

Here, δ
(1)
l (χ′) = δW

l (χ′) + δVl1
l (χ′) is the total phase shift corresponding to the first step of

iteration, and δVl1
l (χ′) is its the addition due to the component Vl1(r) of the separable interaction,

and besides δVl1
l (χ′) ≤ π (the true bound states are absent). Moreover, the function ψ

(1)
l (r, χ′)

will satisfy the orthogonality and completeness properties:

∞∫

0

drψ
(1)
l (r, χ)ψ

(1)∗
l (r, χ′) =

δ(cosh χ− cosh χ′)

dρ
(1)
l (cosh χ)/d(cosh χ)

, (12)

∞∫

1

dρ
(1)
l (cosh χ)ψ

(1)
l (r, χ)ψ

(1)∗
l (r′, χ) = δ(r′ − r),

where the spectral density is now given by

dρ
(1)
l (cosh χ)

d(cosh χ)
=

dρ
(0)
l (cosh χ)

d(cosh χ)

[
cos δVl1

l (χ)
]2

. (13)

Therefore, the properties (12) enable us to continue the process of iterations.

Consider now the superposition of W (r) and
n∑

m=1

εlmVlm(r)Vlm(r′) (n = 1, 2, ...,Ml). In

order to solve (4) with such an interaction, we will use the orthogonality and completeness

properties for the wave function ψ
(n−1)
l (r, χ′). These the properties has the following form:

∞∫

0

drψ
(n−1)
l (r, χ)ψ

(n−1)∗
l (r, χ′) =

δ(cosh χ− cosh χ′)

dρ
(n−1)
l (cosh χ)/d(cosh χ)

, (14)

∞∫

1

dρ
(n−1)
l (cosh χ)ψ

(n−1)
l (r, χ)ψ

(n−1)∗
l (r′, χ) = δ(r′ − r) ,

where

dρ
(n−1)
l (cosh χ)

d(cosh χ)
=

dρ
(0)
l (cosh χ)

d(cosh χ)

n−1∏
m=1

[
cos δVlm

l (χ)
]2

, n = 1, 2, ..., Ml. (15)

Here δVlm
l (χ) is the addition of phase shift due to the component Vlm(r) of the separable inter-

action, and besides
∣∣∣δVlm

l (χ)
∣∣∣ ≤ π (m = 1, 2, ..., Ml−1). In other words, at each step we use the

integral transformations defined by ψ
(n−1)
l (r, χ). These the transformations has the following

form:
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ψ̃
(n)
l (χ′, χ) =

∞∫

0

drψ
(n)
l (r, χ′)ψ(n−1)∗

l (r, χ), Ṽ
(n−1)
ln (χ) =

∞∫

0

drVln(r)ψ
(n−1)∗
l (r, χ), (16)

ψ
(n)
l (r, χ′) =

∞∫
1

dρ
(n−1)
l (cosh χ)ψ̃

(n)
l (χ′, χ)ψ

(n−1)
l (r, χ),

Vln(r) =
∞∫
1

dρ
(n−1)
l (cosh χ)Ṽ

(n−1)
ln (χ)ψ

(n−1)
l (r, χ), n = 1, 2, ...,Ml.

(17)

By applying the transformations (17) to Eq.(4) with such an interaction, we then obtain

(cosh χ′ − cosh χ)ψ̃
(n)
l (χ′, χ) =

1

2
εlnNln(χ′)Ṽ (n−1)

ln (χ), (18)

where

Nln(χ′) =
∞∫
0

dr′Vln(r′)ψ(n)
l (r′, χ′) =

∞∫
1

dρ
(n−1)
l (cosh χ)ψ̃

(n)
l (χ′, χ)Ṽ

(n−1)∗
ln (χ),

n = 1, 2, ..., Ml.
(19)

Now note that by virtue of the conditions in (6) we have the asymptotic expression for the

wave function ψ
(n)
l (r, χ′) in the form

ψ
(n)
l (r, χ′) =

|FW
l (χ′)|

Ql(coth χ′)

n∏
m=1

[
cos δVlm

l (χ′)
]−1

sin

[
rχ′ − πl

2
+ δ

(n)
l (χ′)

]
+ O

(
e−πr/4

)
,

r →∞,

(20)

where δ
(n)
l (χ′) = δW

l (χ′) +
n∑

m=1

δVlm
l (χ′) is the total phase shift (n = 1, 2, ..., Ml).

Besides, the function Ṽ
(n−1)
ln (χ) is everywhere continuous and that the function

Ql(coth χ)
n−1∏
m=1

cos
[
δVlm
l (χ)

]
×

×Ṽ
(n−1)
ln (χ)

∣∣FW
l (χ)

∣∣−1
is differentiable for all χ ≥ 0. Moreover, we find from (16) that

Ql(coth χ)
n−1∏
m=1

cos
[
δVlm
l (χ)

]
Ṽ

(n−1)
ln (χ)

∣∣FW
l (χ)

∣∣−1
= O(1), |χ| → ∞, (21)

Ṽ
(n−1)
ln (χ) = O(1), χ → 0,

provided that the conditions in (6) hold.
For scattering states (E ′ = cosh χ′ ≥ 1), the solution to Eq.(4) is given by

ψ̃
(n)
l (χ′, χ) =

δ(cosh χ− cosh χ′)

dρ
(n−1)
l (cosh χ)/d(cosh χ)

+
1

2
εlnNln(χ′)P

Ṽ
(n−1)
ln (χ)

cosh χ′ − cosh χ
, (22)

where the factor in front of the δ-function was chosen in accordance with the normalization of
the wave function, that is at εln ≡ 0 the representation in (17) for ψ

(n)
l (r, χ′) must lead to the

solution ψ
(n−1)
l (r, χ′) (n = 1, 2, ...,Ml). Substituting the solution in (22) into the representation

in (17) for ψ
(n)
l (r, χ′) and (19) we obtain
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ψ
(n)
l (r, χ′) = ψ

(n−1)
l (r, χ′) +

1

2
εlnNln(χ′)P

∞∫

1

dρ
(n−1)
l (cosh χ)

Ṽ
(n−1)
ln (χ)ψ

(n−1)
l (r, χ)

cosh χ′ − cosh χ
, (23)

Nln(χ′) = εlnṼ
(n−1)∗
ln (χ′)/Φln(cosh χ′), (24)

where

Φln(cosh χ′) = εln +
1

2
P

∞∫

0

dχ
|Aln(χ)|

cosh χ− cosh χ′
, (25)

Aln(χ) = εlnτl(χ)
n−1∏
m=1

[
cos δVln

l (χ)
]2 ∣∣∣Ṽ (n−1)

ln (χ)
∣∣∣
2

, n = 1, 2, ..., Ml. (26)

The principal values of the integrals in (23) and (25) exist since the function Ṽ
(n−1)
ln (χ) is

differentiable and since, by virtue of the conditions in (21), these integrals converge at both
limits.

By using the asymptotic expression in (20) for ψ
(n−1)
l (r, χ′), the solution in (23) represent in

the form

ψ
(n)
l (r, χ′) =

∣∣FW
l (χ′)

∣∣
Ql(coth χ′)

n−1∏
m=1

[
cos δVlm

l (χ′)
]−1

sin

[
rχ′ − πl

2
+ δ

(n−1)
l (χ′)

]
−

−εlnNln(χ′)P
1

2πi

∞∫

−∞

dχ
Ql(coth χ)Ṽ

(n−1)
ln (χ)

|FW
l (χ)| (cosh χ− cosh χ′)

n−1∏
m=1

[
cos δVlm

l (χ)
]
×

× exp

[
i

(
rχ− πl

2
+ δ

(n−1)
l (χ)

)]
+ O

(
e−πr/4

)
, r →∞.

The principal value of the integral in the last equality can easily be calculated for r →∞ if we
use the relation

1

α− iη
= iπδ(α) + P

(
1

α

)
, η → +0,

and then apply the residue theorem in performing integration along the boundary of the region
0 ≤ Imχ ≤ π/2. The result is

ψ
(n)
l (r, χ′) =

∣∣FW
l (χ′)

∣∣
Ql(coth χ′)

n−1∏
m=1

[
cos δVlm

l (χ′)
]−1

sin

[
rχ′ − πl

2
+ δ

(n−1)
l (χ′)

]
−

−εlnNln(χ′)Ql(coth χ′)
sinh χ′ |FW

l (χ′)|
n−1∏
m=1

[
cos δVlm

l (χ′)
]
cos

[
rχ′ − πl

2
+ δ

(n−1)
l (χ′)

]
+

+O
(
e−πr/4

)
, r →∞.

(27)

Finally, taking into account the expressions (24) – (26), we set

tan δVln
l (χ′) = −(π/2)εln sinh−1(χ′)Aln(χ′)/Φln(cosh χ′), n = 1, 2, ..., Ml. (28)

The asymptotic behaviour of the wave function in (27) is then given by the expression in (20).
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3. Bound states and Levinson theorem

Suppous that there exists at least one bound state at energy E(n) = cosh χ(n) ≥ 0 (n =
1, 2, ..., Ml). The solution of Eq. (18) has then the form

ψ̃
(n)
l

(
χ(n), χ

)
= −1

2
εlnNln

(
χ(n)

)
P

Ṽ
(n−1)
ln

(
χ(n)

)

cosh χ− E(n)
, n = 1, 2, ...,Ml. (29)

The substitution of the solutions in (29) into to equality in (19) leads to an equation for
eigenvalues

Φln

(
E(n)

)
= εln +

1

2
P

∞∫

0

dχ
|Aln (χ)|

cosh χ− E(n)
= 0, n = 1, 2, ..., Ml. (30)

Eq. (30) may have solutions at εln = ±1 for the spurious bound states associated with the

component Vln(r) of the separable interaction whose energies E
(n)
fk satisfies the condition

E
(n)
fk = cosh χ

(n)
fk ≥ 1, k =

{
0, 1, ..., ν

(n)
l − 1, εln = 1,

1, 2, ..., ν
(n)
l , εln = −1, n = 1, 2, ..., Ml.

(31)

At the same time, from Eq. (30) it follows that the values of εln = −1 corresponds to the true

bound states of the total interaction whose energies E
(n)
t lies in the range

0 ≤ E
(n)
t = cosh χ

(n)
t < 1, χ

(n)
t = iκ

(n)
t , 0 < κ

(n)
t ≤ π/2, n = 1, 2, ..., Ml. (32)

However, the expressions in (14) and (15) will have the place provided the true bound states
are absent at n = 1, 2, ..., Ml − 1, whereas at n = Ml it may be. This is so provided that

2

π

∞∫

0

dχ

n−1∏
m=1

[
cos δVlm

l (χ)
]2 ∣∣∣Ṽ (n−1)

ln (χ)/FW
l (χ)

∣∣∣
2

< 1 (33)

at εln = −1, n = 1, 2, ..., Ml − 1 (the true bound states are absent), wheares

2

π

∞∫

0

dχ

Ml−1∏
m=1

[
cos δVlm

l (χ)
]2 ∣∣∣Ṽ (Ml−1)

lMl
(χ)/FW

l (χ)
∣∣∣
2

> 1 (34)

at εlMl
= −1 (there exists the only true bound state at n = Ml). The last conditions is

associated with the fact that, for any l, χ ≥ 0, the function gl(χ) is bounded, that is

gl(χ) =
1

2

Q2
l (coth χ)

cosh χ− E
(n)
t

≤ max gl(χ) ≈ π(tanh χmax)
2l

4l+1 cosh χmax

[
1− l + 1

2l + 3
tanh2 χmax

]
< 1.

For the case of spurious bound states at energies (31) the asymptotic behaviour of the wave
function takes the form (27), where the first term is omitted, that is

ψ
(n)
l (r, χ

(n)
fk ) = −εlnNln(χ

(n)
fk )Ql(coth χ

(n)
fk )Ṽ

(n−1)
ln (χ

(n)
fk )

sinh χ
(n)
fk

∣∣∣FW
l (χ

(n)
fk )

∣∣∣

n−1∏
m=1

cos
[
δVlm
l (χ

(n)
fk )

]
×

× cos

[
rχ

(n)
fk −

πl

2
+ δ

(n−1)
l (χ

(n)
fk )

]
+ O

(
e−πr/4

)
, r →∞, n = 1, 2, ..., Ml.
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From this relation, it follows that the wave function ψ
(n)
l (r, χ

(n)
fk ) asymptotically tends to zero,

provided that

Ṽ
(n−1)
ln

(
χ

(n)
fk

)
= 0, n = 1, 2, ..., Ml. (35)

Since the boundary condition (5) is also satisfied, spurious bound states associated with the
component Vln(r)of the separable interaction correspond to the energies in (31). Moreover,
fulfillment of the conditions in (30) and (35) means that, at the energy values in (31), the
phase-shift additions δVln

l (χ′) decreases with increasing χ′, passing through the values πk (k =

{0, 1, ..., ν(n)
l − 1, εln = 1; 1, 2, ..., ν

(n)
l , εln = −1; n = 1, 2, ..., Ml}). This is because both the

numerator and the denominator on the right-hand side of the equality in (28) vanish at these
energy values by virtue of the conditions in (30) and (35). But it follows from the definitions in
(25) and (26) that the functions Φln(cosh χ′) and Aln (χ′) exist and are differentiable. Moreover,

the function Aln (χ′) has a zero of at least the second order at the points χ′ = χ
(n)
fk , while the

function Φln(cosh χ′) has, at these points, only a simple zero since

dΦln (cosh χ′)
dχ′

∣∣∣∣
χ′=χ

(n)
fk

=
1

2
sinh χ

(n)
fk

∞∫

0

dχ
|Aln (χ)|(

cosh χ− cosh χ
(n)
fk

)2 > 0.

This means that, at χ′ = χ
(n)
fk , the quantity tan δVln

l (χ′) vanishes and changes sign, that is

δVln
l

(
χ

(n)
fk

)
= πk, k =

{
0, 1, ..., ν

(n)
l − 1, εln = 1,

1, 2, ..., ν
(n)
l , εln = −1,

dδVln
l (χ′)
dχ′

∣∣∣∣∣
χ′=χ

(n)
fk

< 0, n = 1, 2, ..., Ml.

If the denominator on the right-hand side of (28) does not vanish at χ′ = χ
(n)
fk , the additions of

the phase shift will only touch the straight lines δVln
l = πk (k is an integer) from above or from

below, but it will not intersect them. Besides, studying the behaviour of δVln
l (χ′) as a function

of χ′, one can obtain the values of the energies E
(n)
fk at which spurious bound states exist. At

the same time, the values of εln one can determine by the sign of the phase-shift additions
δVln
l (χ′) at high energies (χ′ → +∞). By using the astimate in (21) and expression (28), we

finally find that tan δVln
l (∞) = 0. This means that, we can choose the function δVln

l (χ′) in such
a way as to ensure fulfillment of the condition

δVln
l (∞) = 0, n = 1, 2, ..., Ml. (36)

Let us now consider the conditions of existence the only true bound state with energy in

(32) associated with the total interaction (n = Ml). The energy E
(Ml)
l of given the only true

bound state will determine as the root of equation (30) provided that the conditions in (33) and
(34) are satisfied. Obviously, the boundary condition (5) is satisfied for given state, and that
its wave function asymptotically tends to zero for r →∞. This can be proven by substituting

the solution in (29) into transformation (17) for ψ
(n)
l (r, χ′) at n = Ml , by using the asymptotic

behaviour of the wave function in (20) for ψ
(Ml−1)
l (r, χ′), and there upon performing integration

along the boundary of the region 0 ≤ Imχ ≤ π/2 by means of the residue theorem. As a result,
we have

ψ
(Ml)
l (r, χ

(Ml)
t ) = O

(
exp

[
−r min

(
κ

(Ml)
t , π/4

)])
, r →∞.
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In order to obtain the Levinson theorem, we will use the results reported in [15, 16]. Taking
into consideration the condition (36) and usual Levinson theorem for a local quasipotential that
does not admit bound states, that is

δW
l (0)− δW

l (∞) = δW
l (0) = 0,

we then obtain

δVln
l (0) = π(σ

(n)
l − σ

(n−1)
l + ν

(n)
l ), n = 1, 2, ..., Ml. (37)

Here ν
(n)
l is the number of spurious bound states associated with the component Vln(r) of the

separable interaction at the energies in (31), and σ
(n)
l is the number of true bound states of the

total interaction at the energies in (32), moreover

σ
(n)
l =





0, εln = 1, n = 1, 2, ..., Ml;
0, εln = −1, n = 1, 2, ..., Ml − 1;
1, εlMl

= −1, n = Ml.

4. Conclusion

Solving of the finite-difference quasipotential equation involving a total quasipotential simu-
lating the interaction of two relativistic spinless particles of unequal masses is obtained. The
total interaction consisting of the superposition of a local quasipotential and a sum of nonlocal
separable quasipotentials is the spherically symmetric quasipotential and it admits the only
true bound state. The problem is investigated within the relativistic quasipotential approach
to quantum field theory. Besides, the local component of the total interaction is supposed to
be known and that it is in accord with experimental data at low energies. The given method
is directly associated with the orthogonality and completeness properties for the partial wave
function of the local quasipotential. It has been shown that the orthogonality and completeness
properties for the partial wave function associated with the superposition of a local quasipo-
tential and a sum a nonlocal separable quasipotentials are also satisfied and this has provided
us the process of iterations. This has permitted us to find an explicit expressions for the phase-
shift additions and to investigate their properties, to determine the conditions under which the
true and spurious bound states may exist, and to generalize the Levinson theorem.
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