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The squeezed state mechanism is used in the framework of the Ginzburg-Landau
model for description of the parton-hadron phase transition in processes with high-
energy densities. Normalized factorial moments are studied as functions of the bin
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are investigated in the squeezed state representation at first-order phase transition.
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1. Introduction

One of the primary motivations of the study of high-energy heavy-ion collisions is to inves-
tigate the properties of quark-gluon system at extremely high temperature and high density.
Such system may be in the state of quark-gluon plasma (QGP) [1]. As expected the system
will undergo a quark-hadron phase transition (PT) [2] with the expanding and cooling. We
can relate the coordinate variables of an expanding system undergoing PT to the kinematical
variables, in terms of which the produced hadrons are measured, and z will be used to denote
set of necessary variables as a whole [3, 4].

One of the theoretical aims is to find a signal about the PT. The order of a PT is sensitive
to the involved approximations and has far-reaching phenomenological consequences. The
experimental consequences of a first-order transition make it relatively easy to see, especially
if the plasma ”explodes” into the hadronic phase. A second-order transition, lacking a jump
in the energy density, may be less easy to see experimentally. At present time no clear signal
of the phase transition is known, although a number of signals has been proposed, and the
quantities measured so far can usually be modeled by both a hot hadron gas and a quark-gluon
plasma.

Lattice gauge calculations indicate that for two flavors the PT is most likely of the second
order [5, 6]. When strange quarks are included, it may become a weak first-order PT [7].
Therefore we need to take into consideration the possibility both first- and second-order PT.

The multiplicity fluctuations of hadrons produced in high-energy heavy-ion collisions can be
used as a measure of whether a quark-gluon system has undergone a phase transition (PT) [8]
because the fluctuations are large near critical points for statistical systems. Thus the study
of fluctuations in the process might reveal some features for the PT which can be tested in
heavy-ion collisions.
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There are a number of efforts to apply the coherent state representation (P-representation)
[9, 10] for investigation of the multiplicity fluctuations as a phenomenological manifestation
of quark-hadron PT in the framework of the Ginzburg-Landau (GL) formalism both for the
second-order [3, 4] and first-order [11–13] PT. One of the differences between second- and first-
order phase transition is a hysteresis phenomenon which is peculiar for the first-order phase
transitions only [11, 12]. In both cases multiplicity distribution of the hadrons without PT was
supposed to be Poisson one that resulted in scaling behaviour of the factorial moments. The
scaling exponent ν appears to be equal 1.305 for second-order PT [3] and 1.32 < ν < 1.33 for
the generalized GL model with first-order PT [12]. These results disagree with old experimental
data on heavy-ion collisions (ν = 1.459 ± 0.021 [14]) that is evidence of absence of the QGP-
hadron PT in these experiments.

In present paper QGP is described phenomenologically and a transition from quarks to
hadrons is considered as phase transition. We demonstrate this on an example of the general-
ized GL theory for phase transition from QGP to hadrons. Considering multiplicity distribution
as squeezed state one [15] in the absence of PT we have generalized GL approach for inves-
tigation of the multiplicity fluctuations at phase transition from QGP to hadrons. Since the
multiplicity fluctuations exhibit intermittent and scaling behaviour which is observed in a large
number of experiments, we investigate conditions of appearance of these effects depending on
the parameters of GL theory.

2. Intermittency and scaling at QGP→Hadron phase transition

One criterion for the order of the phase transition is given by Landau’s theory [16]. It
consists in an expansion of the free energy in powers of the order parameter. The allowed
terms in this expansion are further selected by symmetry arguments. Phase transitions can be
classified according to the transformation behavior of their order parameters under a symmetry
transformation.

Within generalized Ginzburg-Landau (GL) model the free energy of the system [12] is

F [ψ] =

∫
dz{a|ψ(z)|2 + b|ψ(z)|4 + f |ψ|6 + c|∂ψ/∂z|2}, (1)

where ψ(z) is introduced to serve as a complex order parameter.
Then the hadron multiplicity distribution can be given by the functional integral of the type

[17]

Pn = Z−1

∫
DψP 0

ne−F [ψ], (2)

here Z =
∫

Dψe−F [ψ]. Thus the probability of having a large n in volume V is controled by
deviation of ψ from ψ0 (minimum of the GL potential) as specified by the thermodynamical
factor e−F [ψ].

The GL free energy density may be written in the form [13] at f 6= 0 without consideration
of the kinetic term [21] c|∂ψ/∂z|2

F [t] =

√
a3

f
t h(t), (3)

where

h(t) = 1− 2(1 + g)t + t2, t =

√
f

a
|ψ(z)|2, g = −

(
1 +

b

2
√

a f

)
. (4)

276



Intermittency at QGP→Hadron phase transition. . .

Since h(t) has two real roots when g is positive, the minimum jumps from t = 0 to a value
between two roots when

b < −2
√

a f (5)

for a and f both positive. This is manifestation of the first order PT [13]. The multiplicity
distribution after the phase transition in the squeezed state representation is

Pn =
tanhn(r)

2 Z cosh(r)

2π∫

0

dφ

n/2∑

k=0

n/2∑

l=0

(−1)k+l n! (2k − 1)!! (2l − 1)!!

(2k)! (2l)! (n− 2k)! (n− 2l)!

(
2x

a

)(n−k−l)

× F n−2k
1 (r, φ, ϑ)(F ∗

1 )n−2l(r, φ, ϑ)

∞∫

0

dt t(n−k−l) exp

{
−x t

[
h(t)− F2(r, φ, ϑ)/a

]}
, (6)

where the normalized factor Z is equal

Z =
1

2

2π∫

0

dφ

∞∫

0

dt e−x t h(t), (7)

F1(r, φ, ϑ), F2(r, φ, ϑ) are functions of the parameters r, φ, ϑ and in case of coherent squeezed
states (CSS) [15] are equal to

F1(r, φ, ϑ) =
cosh(r)ei(φ−ϑ/2) + sinh(r)e−i(φ−ϑ/2)

√
sinh(2r)

, (8a)

F2(r, φ, ϑ) = cosh(2r)[tanh(r) cos(2φ− ϑ)− 1] + sinh(2r)[tanh(r)− cos(2φ− ϑ)] (8b)

and for scaling squeezed states (SSS) [15] are

F1(r, φ, ϑ) =
ei(φ−ϑ/2)

√
sinh(2r)

, (9a)

F2(r, φ, ϑ) = tanh(r) cos(2φ− ϑ)− 1, (9b)

x = δd

√
a3

f
. (10)

Here we identify V = δd and regard that t is constant in every bin width δ. The obtained
expression for Pn (6) will be essential at analysis phenomenon of intermittency.

One of the effective way to manifest the nature of the multiplicity fluctuations in high-energy
collisions is to examine the dependence of the normalized factorial moments Fq [18, 19]

Fq =
〈n(n− 1) · · · (n− q + 1)〉

〈n〉q =
fq

f q
1

(11)

on the bin width δ in rapidity. Here fq = 〈n (n − 1 ) · · · (n− q + 1) 〉, n is the number of
hadrons detected in δ in an event, and the average are taken over all events. The multiplicity
fluctuations can exhibit intermittency behaviour which is manifested by power-law behaviour
of Fq on δ [18]

Fq ∝ δ−ϕq , (12)
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where ϕq is referred to as the intermittency index. In this paper we examine whether (12) is
valid under taking into account PT. Since

fq =
∞∑

n=q

n!

(n− q)!
Pn, (13)

using (6) and (1) we obtain the next explicit form of fq

fq =
(sinh r)2q

2 Z

2π∫

0

dφ

∞∫

0

dt e−x t h(t)

q∑
n=0

(
q!

n!

)2
(2 tanh r)−n

(q − n)!

×
∣∣∣∣∣Hn

(√
x t

a

[
F1(r, φ, ϑ) cosh r − F ∗

1 (r, φ, ϑ) sinh r
])∣∣∣∣∣

2

. (14)

Obtained expression we can represent as

fq =
Jq

J0

, (15)

where in case CSS

Jq =

∞∫

0

dt e−x t h(t)

q∑
n=0

(q!)2

(q − n)!

n/2∑

k=0

(
(2k − 1)!!

(2k)!(n− 2k)!

)2 (
x t

a

)n−2k

(cosh r)2k(sinh r)2(q−n+k) (16)

and for SSS

Jq =

∞∫

0

dt e−x t h(t)

q∑
n=0

(q!)2

(q − n)!

n/2∑

k=0

n/2∑

l=0

(2k − 1)!! (2l − 1)!!

(2k)! (2l)!

(
x t

a

)n−k−l

×
n−2l∑
j=0

(sinh(r))2(q−n+l+j) (cosh(r))2(n−l−j)

j! (l − k + j)! (n− k − l − j)! (n− 2l − j)!
. (17)

Then according to (11),(15) the normalized factorial moments Fq have the next form

Fq = JqJ
−q
1 Jq−1

0 (18)

and depend on four parameters: a, x, g, r. Obviously that the normalized factorial moments
have an explicit dependence on a GL model parameter a and on an additional squeeze factor r
in contrast to description of QGP↔Hadron phase transition on the base of the coherent state
formalism within generalized Ginzburg-Landau model [13].

If the local slope of ln Fq vs ln F2 is approximately constant then we would have the scaling
behaviour (Ochs-Wosiek scaling law) [20]

Fq ∝ F2
βq , (19)

which is valid for intermittent systems [19]. The slopes βq are well fitted by the formula [4]

βq = (q − 1)ν , (20)

where ν is a scaling exponent. Mean values of the scaling exponent and its standard deviation
at different parameters of the generalized GL model for CSS and SSS are represented in the
Tab.1 and Tab.2 correspondingly for the same values of x, g as in [13] and at the next values
of the parameters: a = 2.25, r = 0.1, 1, 9.

278



Intermittency at QGP→Hadron phase transition. . .

Table 1. Mean values of the scaling exponent and its standard deviation at different parameters of
the generalized GL model for CSS.

g 0.0 0.2
r 0.1 1.0 9.0 0.1 1.0 9.0
〈ν〉 1.472 1.295 1.322 1.512 1.301 1.322
δν 0.153 0.018 0.0 0.165 0.022 0.0

δν

〈ν〉100% 10.4%1.4% 0% 10.9%1.7% 0%

g 0.4 0.6
r 0.1 1.0 9.0 0.1 1.0 9.0
〈ν〉 1.570 1.309 1.322 1.650 1.318 1.322
δν 0.186 0.028 0.0 0.220 0.034 0.0

δν

〈ν〉100% 11.8%2.1% 0% 13.3%2.6% 0%

Table 2. Mean values of the scaling exponent and its standard deviation at different parameters of
the generalized GL model for SSS.

g 0.0 0.2
r 0.1 1.0 9.0 0.1 1.0 9.0
〈ν〉 1.413 1.277 1.316 1.448 1.279 1.315
δν 0.138 0.006 0.003 0.149 0.007 0.004

δν

〈ν〉100% 9.8% 0.5% 0.2% 10.3%0.5% 0.3%

g 0.4 0.6
r 0.1 1.0 9.0 0.1 1.0 9.0
〈ν〉 1.495 1.281 1.314 1.556 1.284 1.314
δν 0.168 0.009 0.004 0.194 0.011 0.004

δν

〈ν〉100% 11.2%0.7% 0.3% 12.5%0.9% 0.3%

3. Conclusion

From obtained data we can conclude: 1) Ochs-Wosiek scaling law is not valid for both CSS
and SSS if the parameter a is an order greater than the squeeze factor at the least; 2) we have the
scaling behaviour of the normalized factorial moments at noticeable squeezing effect: r ≥ 1.0,
moreover the standard deviation of the scaling exponent decreases as squeeze factor increases;
3) in case CSS Ochs-Wosiek scaling law is valid with practically zero error for different values
of the parameter g at large value of the squeeze factor r = 9.0; 4) increasing of the scaling
exponent mean values 〈ν〉 form only percent fraction with subsequent increasing of the squeeze
factor (r À 9.0).
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