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Laurent series solution of the Skyrme model

Jun Yamashita∗ and Minoru Hirayama†

Department of Physics, University of Toyama,
Gofuku 3190 Toyama city, Toyama, 930-8555, Japan

The Painlevé property of the hedgehog configuration of the Skyrme model is in-
vestigated with the aid of the the Ablowitz-Ramani-Segur algorithm (Painlevé test).
The field equation seems to pass the Painlevé test leaving two free parameters in the
solutions of Laurent-series-type. The convergence property of solutions of Laurent-
series-type is examined numerically up to 500th order. The series seems to have a
finite radius of convergence. The profile function of the model is investigated and
static energy of the model is numerically calculated.
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1. Introduction

The Skyrme model [1] is known to be an effective theory of Quantumchromodynamics (QCD)
[2, 3] and admits stable soliton solutions [4]. It is defined by the Lagrangian density

LS =
F 2

π

16
tr(∂µU)(∂µU †) +

1

32e2
tr

(
[∂µUU † , ∂νUU †][∂µUU † , ∂νUU †]

)
, (1)

where U = U(x) is an element of SU(2) and Fπ and e are constants should be fixed by
comparison with experimental data. If we introduce su(2)-valued current Rµ = (∂µU)U †, the
field equation is written by

∂µ

(
Rµ +

1

4
[Rν , [Rν , Rµ]]

)
= 0 (2)

and static energy is defined as

E =
1

12π

∫ [
−1

2
tr (RiRi)− 1

16
tr ([Ri, Rj] [Ri, Rj])

]
d3x, (3)

where we rescaled length and energy as Fπ/4e and 2/eFπ. To discuss soliton solution of the
model, an important topological number, baryon number B is defined by

B =
εijk

24π2

∫
tr (RiRjRk) d3x. (4)

The soliton solutions of the Skyrme model are classified by the baryon number B. Battye and
Suttcliffe [4] illuminated that numerical analysis of this model reveals that it admits polyhedral
soliton solutions for each baryon number.
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If we impose the spherically symmetric(hedgehog) Ansatz

U = exp [if(r) (x̂ · τ )] , r = |x|, (5)

the field equation becomes the following ordinary differential equation

[
r2 + 2 sin2 f(r)

] d2f(r)

dr2
+ 2r

(
df(r)

dr

)
+ sin 2f(r)

[(
df(r)

dr

)2

− 1− sin4 f(r)

r2

]
= 0, (6)

where r =
√

(x1)2 + (x2)2 + (x3)2. It seems difficult to obtain the analytic solutions for the
equation. Cho[5] noted that the constant configuration f(r) = 2π solves the Eq.(6) and con-
stitutes the monopole solution of the Skyrme model.

Introducing the variables

z =
r2

r2 + 2
, v(z) ≡ tan2 f(z), (7)

field equation for the Skyrme model(6) can be rewritten as

d2v

dz2
− 1

2

[
3

v + 1
+

1

v
− 1

v + z

](
dv

dz

)2

+
1

2

[
1

z − 1
+

1

z
+

2

v + z

]
dv

dz
+

v [v(z + 1) + 2z]

2z2 (z − 1)2 (v + z)
= 0.

(8)

For this equation, we obtained the solution as a Laurent series of the form[7]

v(z) =
z (1− z)2

(z − z0)
2

∞∑
j=0

wj (z − z0)
j , (9)

where z0 is an arbitrary parameter. Another free parameter in this solutions is w0. If we input
values z0 and w0, all w−js (j ≥ 1) are expressed by z0 and w0 without ambiguity. In this paper,
we will review the solution Eq.(9) with the help of ARS algorithm[6]. This paper is organized
as follows. In Sec.2 we will discuss the Painlevé property of the Skyrme model applying ARS
algorithm to the field equation (8). In Sec.3 the behavior of the profile function f(r) and a
least energy E by f(r) is investigated. We shall close by giving a brief summary in Sec.4.

2. Painlevé test for the Skyrme model

Ablowitz, Ramani and Segur (ARS)[6] proposed a criterion to judge whether any solution
of a given ordinary differential equation has movable branch points or not. To analyze the
Painlevé property of Eq(8), it is convenient to rewrite Eq.(8) as

2v (v − 1) (z − v)
d2v

dz2
− (

3v2 − 4zv + z
) (

dv

dz

)2

+
v (v − 1)

z (z − 1)

(
4z2 − 2zv − 3z + v

) dv

dz

+
v2 (v − 1)

z2 (z − 1)2 [v (z + 1)− 2z] = 0. (10)

We suppose that

v(z) =
∞∑

j=0

vj (z − z0)
j−α (11)

is a solution of Eq.(8) around z = z0 and assuming that z0 is different from 0 and 1.
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2.1. Leading order analysis

Substituting v(z) = v0 (z − z0)
−α into the leading terms in Eq.(10),

−2v3d2v

dz2
+ 3v2

(
dv

dz

)2

, (12)

and balancing as

2α (α− 1) v4
0P

−(4α+2) − 3α2v4
0P

−(4α+2) = 0,

we obtain the leadingorder α = 2 and v0 is arbitrary where P ≡ (z − z0).

2.2. Resonance analysis

To find resonances it is enough to analyze the leading order terms. Substituting the Laurent
series

v(z) =
∞∑

j=0

vjP
j−2 (v0 6= 0) (13)

into Eq.(10), we obtain the relation

∞∑

k=0

P k[k(k + 1)vk + Fk(v0, · · · , vk−1)] = 0, (14)

where Fk(v0, ..., vk−1) is a function of v0, · · · , vk−1. From the coefficient of vk, we obtain the
resonances k = −1 and 0. Here, k = −1 and k = 0 correspond to the arbitrariness of z0 and
v0, respectively.

2.3. Compatibility check

The coefficients v1, v2, · · · are calculated as

v0 = arbitrary, v1 =
−v0 + 2v0z0

2z0(z0 − 1)
,

v2 =
v0 + 4v0z

2
0 − 16z2

0(z0 − 3)(z0 − 1)2

48z2
0(z0 − 1)2

,

v3 =
−32z3

0(z0 − 1)3 + v0(1− 2z0 − 4z2
0)

96z3
0(z0 − 1)3

, · · · .

We computed vj’s up to v500 numerically in some cases of (v0, z0). The radius of convergence R of

the Laurent series is determined by R = limj→∞
(
|vj|1/j

)−1

. The result of the v0 = −1, z0 = 1/2

case is given in Fig. 1.
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Fig.1: |vj|1/j in the case v0 = −1 and z0 = 1/2.

This result is summarized as |v500|1/500 ∼ 2.0248 · · · . The radius of convergence could be

surmised as ≈ 1/2 since the value of |vj|1/j hardly changes for j . 500 as is shown in Table 1.

Table 1: |vj |1/J for j=490 to 500

j 490 491 492 493 494 495 496 497 498 499 500
|vj |1/j 2.02478 2.02478 2.02478 2.02479 2.02479 2.0248 2.0248 2.02481 2.02481 2.02481 2.02482

2.4. Behavior at spatial origin and infinity

Since we assumed that z0 6= 0, 1 in analysis of the solution (10), we here consider the case
z0 = 0 in (11):

v(z) =
∞∑

j=0

vjz
j−α, (15)

which corresponds spatial origin. In this case, leading behavior of the field equation (10)
depends on values of α. For example, (10) reduces as

−2v4
0z

4αα (α− 1) + 3v4
0z4αα2 − αv4

0z
4α + v4

0z
4α = 0 (16)

for α > 0 case and there are no real α satisfying α > 0. Through the leading order analysis for
α < 0, α = 0, 0 < α < 1, α = 1, α > 1 cases, we conclude that α = −1 is consistent.

Next, we consider the case z0 = 1 in (11):

v(z) =
∞∑

j=0

vj (z − 1)j−α , (17)

which corresponds spatial infinity. Leading order analysis again for this case results α = −2.
Since the solution (11) for each cases are the form of infinite series, v(z) of the form (9) is

also a solution for the field equation (10). Note that the behavior of v(z) matches the boundary
condition

f(0) = π, f(∞) = 0. (18)
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Substituting the solution (9) into Eq.(10), The coefficients w1, w2, · · · are determined except
w0 as

w0 = arbitrary, w1 =
v0(4z0 − 1)

2z0(1− z0)
, w2 =

(148z2
0 − 72z0 + 25)w0 − 16z0(z0 − 3)

48z2
0(1− z0)2

,

w3 =
(51− 200z0 + 292z2

0 − 408z3
0)w0 − 32z0(2z

2
0 − 9z0 + 3)

96z3
0(z0 − 1)3

,

w4 =
1

3840w0z4
0(z

4
0 − 1)4

[
(21104z4

0 − 19840z3
0 + 20176z2

0 − 10200z0 + 2093)w2
0

−(3776z4
0 − 23008z3

0 + 15260z2
0 + 3936z0)w0 + 768z3

0 − 512z4
0

]
. (19)

We computed wj’s up to w500 numerically as same in Sec C. The result of the v0 = −2, z0 = 1/2
case is given in Fig. 2.
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Fig.2: |wj|1/j in the case w0 = −2 and z0 = 1/2.

This result is summarized as |v500|1/500 ∼ 2.07112 · · · . The radius of convergence could be
surmised as ≈ 1/2 and values of j . 500 as is shown in Table 1.

Table 2: |wj |1/J for j=490 to 500

j 490 491 492 493 494 495 496 497 498 499 500
|wj |1/j 2.07126 2.07106 2.07124 2.0707 2.07121 2.07029 2.07119 2.06982 2.07116 2.06931 2.07112

3. Profile function f(r) and Static energy

From the discussion in previous subsection, v(z) takes the form

v(z) =
z(1− z)2

(z − z0)2
w(z), (20)

where w(z) is a smooth function which is non-vanishing and finite for 0 5 z 5 1. Then we see
that the natural relation between f(r) and v(z) inverse to Eq.(7) is given by

f(r) =

{
π − Arctan

√
v(z), 0 5 z 5 z0,

Arctan
√

v(z), z0 5 z 5 1.
(21)
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We have numerically estimated E with changing w0 and z0 by the step 0.001 with setting
w(z) as

w(z) =
N∑

k=0

wk(z − z0)
k, N :small, (22)

and find that

E = 1.23186 · · · ∼= 1.2319 (23)

for

v(z) =
0.673z (1− z)2

(z − 0.279)2 (24)

is at least a local minimum[7]. The profile function and energy density of this case is depicted
in Fig.1 and Fig.2, respectively.
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Fig.1: Profile function f(r) for
w0 = 0.673, z0 = 0.279.
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Fig.2: Energy density ε(r) for
w0 = 0.673, z0 = 0.279.

In the N = 1, 2, 3 cases, with the help of (19), we have




N = 1, w0 = 0.670, z0 = 0.275, E = 1.23215 · · · ∼= 1.2322.

N = 2, w0 = 0.485, z0 = 0.327, E = 1.34000 · · · ∼= 1.3400.

N = 3, w0 = 0.385, z0 = 0.249, E = 1.34234 · · · ∼= 1.3423.

(25)

We see that the N = 0 case gives a smaller E than N = 1, 2, 3 cases.
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4. Conclusion

We have explored an analytical solution for the Skyrme model under spherically symmetric
Ansatz (8). Our solution is of Laurent-series-type which contains two arbitrary parameters
z0 and w0. The arbitrariness of z0 and w0 corresponds to the resonances j = −1 and 0,
respectively. We have not encountered any inconsistency of the expansion of w(z) in a Laurent
series. We checked that our solution has finite radius of convergence. We have numerically
obtained R ∼ 1/2 for z0 = 1/2 and w0 = −2. This R indicates that our solution f(z) is regular
in 0 < r < ∞ since 0 < r < ∞ corresponds to 0 < z < 1 by (7). We have numerically estimated
E with changing w0 and z0 and find that the smallest energy can be calculated in N = 0 case.
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