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The explicit construction of the approximate wave functions for excited states is
performed in the framework of a perturbative-variational method with the help of a
new minimization procedure for a integral discrepancy. The numerical verification
of a new approach is performed by calculating the expectation values of powers of
the quartic oscillator Hamiltonian. The detail graphical verification is fulfilled by
means of a local discrepancy.

PACS numbers: 03.65.Db; 03.65.Ge
Keywords: perturbative-variational approximation, trial functions, local and integral dis-
crepancies

1. Introduction

Two main difficulties arise when we attempt to solve the Schrödinger equation for the excited
states within the framework of the variational method. The first of them is to construct the
full set of the trial vectors |Ψn(ω) > or the trial wave functions Ψn(ω, x) =< x|Ψn(ω) > with

a variational parameter ω for the given initial Hamiltonian Ĥ and quantum numbers n. In the
perturbative-variational approach, the trial vectors are constructed by means of perturbation
theory (PT) with an unperturbed Hamiltonian Ĥ0(ω) depending on a variational parameter
[1–3]. The next question is choosing the optimal value of a variational parameter. There are
several ways to fix the parameter ω in the perturbative-variational approach. Some of them
are connected with minimization of perturbative corrections of energy or eigenvectors. Such
methods have a special character and are oriented for using PT for constructing the trial vectors,
although, generally speaking, these vectors could be generated in another way. The prevalent
way of fixing ω is the principle of minimal sensitivity or the fulfilment of usual requirement (
see [4, 5])

∂Ēn(ω)

∂ω
= 0 (1)

for an expectation value of the origin Hamiltonian

Ēn(ω) =< Ψn(ω)|Ĥ|Ψn(ω) > (2)

(< Ψn(ω)|Ψn(ω) >= 1). There can be several stationary points, and there is no method to
select one of them. We denote the point of absolute minimum as ωe. Besides, energy in this
sense is not a preferred quantity in comparison with the other expectation values. It is also
well-known, that calculation of the energy with increased accuracy does not always lead to an
improvement of the other characteristics. Thus, till present time the question how to find the
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universal criterion of choosing the optimal value of a varied parameter within the framework
of the variational approach remains to be solved.

2. Local and integral discrepancies

In our opinion such criterion should be directly connected with the initial spectral problem

ĤΨn(x)− EnΨn(x) = 0. (3)

Let us rewrite this Schrödinger equation in the following way

ĤΨn(x)

< Ψn|Ĥ|Ψn >
−Ψn(x) = 0 (4)

for the normalized eigenfunctions (< Ψn|Ψn >= 1). Now we introduce a discrepancy vector

|Dn(ω) >=
Ĥ|Ψn(ω) >

< Ψn(ω)|Ĥ|Ψn(ω) >
− |Ψn(ω) > (5)

and a local discrepancy

Dn(ω, x) =< x|Dn(ω) >=
ĤΨn(ω, x)

< Ψn(ω)|Ĥ|Ψn(ω) >
−Ψn(ω, x) (6)

for a normalized trial function Ψn(ω, x) which is not exact solutions of equation (3). In the case
of an approximate wave function Ψn(ω, x) we have inequality Dn(ω, x) 6= 0. In order to perform
the complete estimation of approximation it is sufficient to compare two functions Ψn(ω, x) and
Dn(ω, x). With such approach it is not necessary to find the exact solution of the Schrödinger
equation for analysis of approximation exactness.

In addition to a local discrepancy we can determine an integral discrepancy

dn(ω) =< Dn(ω)|Dn(ω) >=
< Ψn(ω)|Ĥ2|Ψn(ω) >

< Ψn(ω)|Ĥ|Ψn(ω) >2
− 1 (7)

which characterizes goodness of the approximation and is equal to zero for an exact solution of
the Schrödinger equation.

The introduced characteristic dn(ω) has a direct geometric sense. Let us set the normal-

ized trial vector |Ψn(ω) > in Hilbert space. Under the action of the Ĥ operator, the vector

Ĥ|Ψn(ω) > is obtained. We can find the angle ϕn(ω) between the vectors |Ψn(ω) > and

Ĥ|Ψn(ω) > from the scalar product of these vectors:

cos ϕn(ω) =
< Ψn(ω)|Ĥ|Ψn(ω) >√
< Ψn(ω)|Ĥ2|Ψn(ω) >

. (8)

From here we obtain the relation

tan2 ϕn(ω) = dn(ω) (9)

The Hamiltonian Ĥ rotates the approximate trial vector through an angle ϕn(ω) and dilates
it, while under the action of the Hamiltonian the exact eigenvector is only dilated, but is not
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rotated. The degree of closeness of the approximate eigenvector to the exact eigenvector is
determined by the angle ϕn(ω) of rotation .

In [6] a new approach to the determination of ω from the integral discrepancy minimization
condition was proposed. In this case, the PT first approximation was used, and quantitative
estimate of the approximate eigenvectors was not complete enough. In the present paper, we
go from the first to the third order of PT where the trial functions, becoming more precise, do
not become too complicated.

So we propose to determine the parameter ω by minimization of dn(ω) (minimal angle of
rotation):

d

dω
dn(ω) = 0. (10)

Note that we find the absolute minimum of dn(ω). We denote the point of this minimum as
ωd. The analogs of the quantity dn(ω) have been used for a long time to estimate the degree of
approximation, but not to choose the optimal values of the parameters of the trial functions.

3. Perturbative-variational approach

We illustrate our approach in the case of the quartic oscillator Hamiltonian :

Ĥ =
1

2
(p̂2 + x4) (11)

which is often used as a test for different approximation methods.
In the present paper we use the operator method [1] in which the unperturbed Hamiltonian

Ĥ0(ω) is a diagonal part

Ĥ0(ω) =
∑

n

E0
n|Ψ0

n(ω) >< Ψ0
n(ω)|, (12)

E0
n(ω) =< Ψ0

n(ω)|Ĥ|Ψ0
n(ω) >

of the initial Hamiltonian Ĥ in the basis of the eigenvectors |Ψ0
n(ω) > of the harmonic oscillator

Hamiltonian

Ĥosc(ω) =
1

2

(
p̂2

ω
+ ωx2

)
. (13)

The corresponding normalized eigenfunctions Ψ0
n(ω, x) =< x|Ψ0

n(ω) > satisfy equation

Ĥosc(ω)Ψ0
n(ω, x) =

(
n +

1

2

)
Ψ0

n(ω, x).

The trial wave functions are constructed according to the PT rules up to the third order
(p = 1, 2, 3) in the following form

Ψ(p)
n (ω, x) = N

(
Ψ0

n(ω, x) +
∑

m6=n

C(p)
nmΨ0

m(ω, x)

)
(14)

where the Cnm(p) values are defined by the relations

C(p)
nm =

p∑
s=1

C(s)
nm,
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C(s)
nm =

[
E0

m − E0
n

]−1

[ ∑

k 6=n,m

HnkC
(s−1)
km −

s−1∑
t=1

C(t)
nm

∑

k 6=m

HmkC
(s−t−1)
km

]
, (15)

Hmn =< Ψ0
m(ω)|Ĥ|Ψ0

n(ω) > .

In this case, equation
Ĥ0(ω)|Ψ0

n(ω) >= E0
n(ω)|Ψ0

n(ω) > (16)

has an exact solution. The normalization factor N for the trial function should be chosen so that
the condition < Ψn(ω)|Ψn(ω) >= 1 is fulfilled. We denote the local and integral discrepancies

corresponding to the p-th order of PT as D
(p)
n (ω, x) and d

(p)
n (ω).

We will demonstrate our approach by calculating the following characteristics. First, we
calculate the value of the integral discrepancy. Other natural characteristics of goodness of the
approximate eigenvectors are expectation values of powers of the Hamiltoninan. The quantita-
tive estimates of the approximation can be the following relative values

e(p)
n (k, ω) =

< Ψ
(p)
n (ω)|Ĥk|Ψ(p)

n (ω) >1/k

Eex
n

− 1, (17)

where Eex
n is the exact energy value. The exact energy values for Hamiltoninan (11) are known

[7]. We emphasize that the characteristics e
(p)
n (k, ω) permit us to investigate the goodness of

the trial vectors on the basis of the knowledge of only one physical quantity - energy.

4. Verification of proposed approach

We compare two variants of fixing a varied parameter. The first variant corresponds to the
absolute minimum of the integral discrepancy (ω = ωd). The second variant corresponds to the
absolute minimum of energy (ω = ωe). We also investigate the dependence of the approximate
wave functions and local discrepancies on the order of PT.

Fig. 1 and Fig. 7 show the dependence of the integral discrepancies d
(p)
n (ω) on ω for n = 15

and n = 20 respectively. Fig. 3 and Fig. 9 show the dependence of the approximate wave func-

tions Ψ
(p)
n (ωd, x) for n = 15 and n = 20 respectively. Fig. 5 and Fig. 11 show the dependence of

the local discrepancies D
(p)
n (ωd, x) for n = 15 and n = 20 respectively. We see that increase of

PT order leads to decrease of the integral discrepancies and improvement of the approximation
when we choose the variational parameter by means of minimization of the integral discrepancy.
Figures labeled by even numbers correspond to the energy minimization variant of the varia-
tional parameter choice. From comparison of figures it is evident that our proposed variant has

the certain advantage. It is easily seen that d
(3)
n (ω) has one absolute minimum, while e

(3)
n (1, ω)

has several local minima. The minimum of the function d
(3)
n (ω) corresponds to the flat part of

the curve e
(3)
n (1, ω), i.e. this part of e

(3)
n (1, ω) is almost independent on ω. Besides, the value of

ωe, which determines the local minimum of e
(3)
n (1, ω) on this part coincides with the value of

ωd, realizing the minimum of d
(3)
n (ω), with an accuracy of 0.06%.
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FIG. 1. The integral discrepancies for n = 15.
(Dotted line for d

(1)
15 (ω), dashed line for d

(2)
15 (ω)

and solid line for d
(3)
15 (ω)).
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FIG. 2. The scaled energies for n = 15. (Dotted
line for e

(1)
15 (1, ω) , dashed line for e

(2)
15 (1, ω) and

solid line for e
(3)
15 (1, ω)).
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FIG. 3. The wave functions for n = 15. (Dot-
ted line for Ψ(3)

15 (ωd, x)−Ψ(1)
15 (ωd, x), dashed line

for Ψ(3)
15 (ωd, x) − Ψ(2)

15 (ωd, x) and solid line for
Ψ(3)

15 (ωd, x)).
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FIG. 4. The wave functions for n = 15. (Dot-
ted line for Ψ(3)

15 (ωe, x)−Ψ(1)
15 (ωe, x), dashed line

for Ψ(3)
15 (ωe, x) − Ψ(2)

15 (ωe, x) and solid line for
Ψ(3)

15 (ωe, x)).
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FIG. 5. The local discrepancies for n = 15.
(Dotted line for D

(1)
15 (ωd, x), dashed line for

D
(2)
15 (ωd, x) and solid line for D

(3)
15 (ωd, x))).
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FIG. 6. The local discrepancies for n = 15. (Dot-
ted line for D

(1)
15 (ωe, x), dashed line for D

(2)
15 (ωe, x)

and solid line for D
(3)
15 (ωe, x)).
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FIG. 7. The integral discrepancies for n = 20.
(Dotted line for d

(1)
20 (ω), dashed line for d

(2)
20 (ω)

and solid line for d
(3)
20 (ω)).
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FIG. 8. The scaled energies for n = 20. (Dotted
line for e

(1)
20 (1, ω) , dashed line for e

(2)
20 (1, ω) and

solid line for e
(3)
20 (1, ω)).
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FIG. 9. The wave functions for n = 20. (Dot-
ted line for Ψ(3)

20 (ωd, x)−Ψ(1)
20 (ωd, x), dashed line

for Ψ(3)
20 (ωd, x) − Ψ(2)

20 (ωd, x) and solid line for
Ψ(3)

20 (ωd, x)).
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FIG. 10. The wave functions for n = 20. (Dot-
ted line for Ψ(3)

20 (ωe, x)−Ψ(1)
20 (ωe, x), dashed line

for Ψ(3)
20 (ωe, x) − Ψ(2)

20 (ωe, x) and solid line for
Ψ(3)

20 (ωe, x)).
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FIG. 11. The local discrepancies for n = 20.
(Dotted line for D

(1)
20 (ωd, x), dashed line for

D
(2)
20 (ωd, x) and solid line for D

(3)
20 (ωd, x)).

1 2 3 4

x

-0.2

-0.1

0.1

0.2

FIG. 12. The local discrepancies for n = 20.
(Dotted line for D

(1)
20 (ωe, x), dashed line for

D
(2)
20 (ωe, x) and solid line for D

(3)
20 (ωe, x)).
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Table 1: Numerical verification of the proposed approach.

n p ω d
(p)
n (ω) e

(p)
n (1, ω) e

(p)
n (2, ω) e

(p)
n (3, ω) e

(p)
n (4, ω)

15 1 3.261 1.890 10−3 1.360 10−3 2.306 10−3 3.426 10−3 4.904 10−3

1 3.693 1.231 10−2 −4.718 10−3 1.391 10−3 7.615 10−3 1.444 10−2

2 3.355 3.240 10−4 2.245 10−4 3.865 10−4 5.771 10−4 8.275 10−4

2 3.787 4.617 10−2 −6.543 10−4 1.650 10−3 4.067 10−3 6.947 10−3

3 3.368 4.661 10−5 5.643 10−5 7.973 10−5 1.116 10−4 1.614 10−4

3 3.824 3.037 10−3 −2.268 10−4 1.290 10−3 2.899 10−3 4.805 10−3

20 1 3.546 2.162 10−3 1.787 10−3 2.870 10−3 4.108 10−3 5.627 10−3

1 4.031 1.458 10−2 −6.076 10−3 1.144 10−3 8.491 10−3 1.626 10−2

2 3.638 4.950 10−4 3.071 10−4 5.546 10−4 8.289 10−4 1.155 10−3

2 4.132 8.146 10−3 −1.462 10−3 2.597 10−3 6.872 10−3 1.174 10−2

3 3.639 8.788 10−5 9.943 10−5 1.434 10−4 1.980 10−4 2.732 10−4

3 4.177 6.884 10−3 −7.707 10−4 2.663 10−3 6.255 10−3 1.029 10−2

Each cell in Table 1 contains six lines. The first pair of lines corresponds to the first order
of PT, the second pair of lines corresponds to the second order of PT and the last pair of
lines corresponds to the the third order of PT. Each odd line corresponds to the discrepancy
minimization variant and each even line corresponds to the energy minimization variant. From
the analysis of Table 1 it is clearly seen that the improvement of the integral discrepancy dn(ω)
leads to the systematic improvement of all the characteristics en(k, ω).

5. Conclusion

Thus, the considered example demonstrates the efficiency of the minimization of the absolute
discrepancy as a method of optimization of a variational parameter. It should be emphasized,
that our criterion is not restricted to a particular realization of the trial functions such as PT-
series, but is general in character and can be used in the case of arbitrary trial functions for
description of different physical systems within the variational approach. Finally, we stress that
the proposed estimate of the approximation validity by means of the local discrepancy can be
applied to all approximate methods, not only to the particular variational method.

References

[1] I. D. Feranchuk et al, Ann. of Phys. 238, 370 (1995)
[2] F. Arias de Saavedra and E. Buendia, J. Phys. A 22, 1933 (1989)
[3] K. L. Chan et al, Phys. Lett. A 162, 227 (1992)
[4] H. Ciftci, E. Ateser and H. Koru, J. Phys. A 36, 3621 (2003)
[5] H. Ciftci, R. H. Hall and Q. D. Katatbeh, J. Phys. A 36, 7001 (2003)
[6] V. V. Kudryashov and V. I. Reshetnyak, Nonlinear Phenomena in Complex Systems, eds. L.

Babichev and V. Kuvshinov (Institute of Physics, Minsk, 2000) p. 168.
[7] K. Banerjee et al, Proc. R. Soc. Lond. A 360, 575 (1978)

235


