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The case of electrically neutral spin 1/2 particle is investigated on the background

of a curved space-time. In any one of Majorana bases the Dirac generally covariant

equation reduces to a pair of separate equations for a real and complex parts of

the 4-spinor wave function Ψ = ϕ+ + iϕ−. The lorentz matrices in bispinor space,

being specified in any Majorana basis, turn to be real-valued, therefore equations for

ϕ+ and iϕ− are not mixed by local Lorentz transformations associated with tetrad

changes in curved space. The set of all Majorana bases is looked through in detail,

and 17-parametric transformation ΨM (x) = A(mi, ni, e
iα) Ψ(x) referring spinor basis

to any Majorana’s is derived. Several the simplest examples of choosing parameters

(mi, ni, e
iα) are given, they correspond to widely used Majorana representations.

One special case of electrically neutral particle with non-vanishing magnetic moment

is discussed. Its wave function must be complex-valued. In other words, real nature

of the wave function of the particle is equivalent to requirement – all electromagnetic

characteristics of the particle, including electric charge, must vanish.
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1. Majorana fermion in a curved space-time

Let us consider a generally covariant Dirac equation [1,2]

{ γα(x) [ i ( ∂α + Γα(x) ) − eAα ]− m } Ψ(x) = 0 , (1)

γα(x) = γa eα
(a)(x) , Γα(x) =

1

2
σab eβ

(a) ∇α ( eα
(b);β )

in one of Majorana bases [3] of bispinor space which is characterized by the properties [4]:

(i γa
M)∗ = +γa

M , (σab
M)∗ = +σab

M , (i γ5
M)∗ = +γ5

M . (2)
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The wave Dirac operator (1) in any curved space in absence of electromagnetic field, being

specified for any Majorana basis turns to be real-valued

[ iγα(x) ( ∂α + Γα(x) ) − m ]∗ = iγα(x) ( ∂α + Γα(x) ) − m .

This means that real and imaginary parts of the wave function ΨM = ϕ+ + i ϕ− are not mixed

by the gravitational terms. In other words, there are two separate equations for the fields ϕ+

and ϕ−:

[ iγα(x) ( ∂α + Γα(x) ) − m ]ϕ+ = 0 ,

[ iγα(x) ( ∂α + Γα(x) ) − m ]ϕ− = 0 . (3)

If one starts with another form of the Dirac equation [2]

Bk(x) =
1

2
eα
(k) ;α(x) , Ck(x) =

1

4
εabc

kγabc(x) ,

{γk [ i ( eα
(k)∂α + Bk − iγ5Ck ) − eAa ] − m} Ψ = 0 . (4)

the same result will be obtained: equations for the real and imaginary parts of the Ψ are

independent from each other:

[
i γk ( eα

(k)∂α + Bk − iγ5Ck ) − m
]

ϕ+ = 0 ,[
iγk ( eα

(k)∂α + Bk − iγ5Ck ) − m
]

ϕ− = 0 . (5)

Thus, two Majorana fermion fields, real ϕ+(x) and imaginary i ϕ−, can interact with gravi-

tational field according (3) (or (5)).

2. On Lorentz 4-spinor transformations in Majorana basis

The Lorentz transforms for 4-spinor wave functions have the simplest forme in 2-spinor

representation [4]

Ψ(x) = (ξ(x), η(x)), ξ′ = B(k)ξ, η′ = B(k̄∗)η . (6)

To obtain explicit expressions for 4-spinor Lorentz matrix in arbitrary basis it suffices to

decompose the above matrix S = B(k) ⊕ B(k̄∗) in terms of sixteen elementary matrices:

I, γ5, γa, γ5γa, σab. The coefficients of that decomposition do not depend on (accidental)

choice of the Dirac matrices. In that way, let us represent S(k, k∗) in spinor basis

S(k, k∗) =

∣∣∣∣∣
σa ka 0

0 σ̄a ka

∣∣∣∣∣ (7)

as a linear combination

S = Φ I + Φ̃ γ5 + Φa γa + Φ̃a γ5 γa + Φab σab , (8)
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and further ∣∣∣∣∣
σa ka 0

0 σ̄a ka

∣∣∣∣∣ =

[
Φ

∣∣∣∣∣
I 0

0 I

∣∣∣∣∣ + Φ̃

∣∣∣∣∣
−I 0

0 +I

∣∣∣∣∣ +

Φa

∣∣∣∣∣
0 σ̄a

σa 0

∣∣∣∣∣ + Φ̃a

∣∣∣∣∣
0 −σ̄a

σa 0

∣∣∣∣∣ + Φab

∣∣∣∣∣
Σab 0

0 Σ̄ab

∣∣∣∣∣

]
.

From the later one gets

0 = Φa σ̄a − Φ̃a σ̄a , 0 = Φa σa + Φ̃a σa ,

σa ka = φ − Φ̃ + Φab Σab , σa ka = φ + Φ̃ + Φab Σ̄ab .

Evidently, Φa = 0 and Φ̃a = 0; the remaining equations are readily solved with the use of trace

technique for Dirac matrices:

kc = (Φ − Φ̃) g0c + Φ0c − i/2 Φab εabc0 ,

k∗c = (Φ + Φ̃) g0c + Φ0c + i/2 Φab εabc0 . (9)

From (9) it follows:

Φ = (k∗0 + k0)/2 , Φ̃ = (k∗0 − k0)/2 ,

Φ01 = (k∗1 + k1)/2 , Φ23 = (k∗1 − k1)/2i ,

Φ02 = (k∗2 + k2)/2 , Φ31 = (k∗2 − k2)/2i ,

Φ03 = (k∗3 + k3)/2 , Φ12 = (k∗3 − k3)/2i . (10)

Turning to eq. (8), one arrives at

S(k, k∗) =
1

2
(k0 + k∗0)−

1

2
(k0 − k∗0)γ

5 + k1(σ
01 + iσ23) + k∗1(σ

01 − iσ23) +

k2(σ
02 + iσ31) + k∗2(σ

02 − iσ31) + k3(σ
03 + iσ12) + k∗3(σ

03 − iσ12) . (11)

Introducing real and imaginary parts in complex ka = ma − ina, the previous relation can be

written as

S(ma, na) = (m0 + n0iγ
5) +

+(m1σ
01 + m2σ

02 + m3σ
03) + (n1σ

23 + n2σ
31 + n3σ

12) (12)

The formula obtained (12) provides us with explicit form of Lorentz transformations for 4-spinor

wave function, it is the same in all bases. Specifying the matrices involved according to any of

Majorana forme (iγ5
M)∗ = iγ5

M , (σab
M)∗ = + σab

M , we see that the Lorentz transformations are

real-valued in those bases.

This property is of primary significance in the context of symmetry properties of the Ma-

jorana equation under Lorentz group in any curved space-time. In is known that in any Rie-

mannian space-time the Dirac equation for a charged fermion proves gauge symmetry under

local Lorentz group, which is related with the freedom to choose an arbitrary tetrad eβ
(a)(x) at a

given space-time metric gαβ(x). The property of bispinor Lorentz matrices to be real-valued in

Majorana representations means that the local Lorentz gauge symmetry for Majorana equation

holds as well.
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3. On Majorana bases structure

Now we are to describe all possible Majorana’s bases. To this end we should find all

transformations A in 4-spinor space that change all the Dirac matrices to the imaginary forme

ΨM(x) = A Ψ(x) , γa
M = A γa A−1 , (γa

M)∗ = −γa
M ; (13)

here γa stand for the Dirac matrices in spinor representation. One should note that the problem

must have a many of solutions. Indeed, if A satisfies eq. (13) then any matrix of the form

A′ = eiα R A, where R is real, will satisfy eq. (13) as well:

if (A γa A−1)∗ = −(A γa A−1) ,

then
[

(eiα R A) γa (eiα R A)−1
]∗

= − [
(eiα R A) γa (eiα R A)−1

]∗
.

Equation (13) can be written as

A∗ (γa)∗ (A∗)−1 = −A γa A−1 , or (A−1 A∗) (γa)∗ (A−1 A∗)−1 = − γa .

With the use of notation A−1 A∗ = U , the latter reads

U (γa)∗ U−1 = − γa . (14)

In spinor representation four identities hold

(γ0)∗ = +γ0 , (γ1)∗ = +γ1 , (γ2)∗ = −γ2 , (γ3)∗ = +γ3 ,

therefore, solution of eq. (14) looks as

U = const γ2 , det (γ2) = +1 . (15)

Because det U = (det A)∗/(det A) , one must conclude that const is equal to a phase factor

eiα. Thus, the problem is reduced to

A−1 A∗ = eiα γ2 , or A∗ = eiα A γ2 . (16)

Any 4-dimensional matrix can be decomposed into sixteen Dirac elementary matrices:

I γ0 γ1 γ2 γ3

γ5 γ5γ0 γ5γ1 γ5γ2 γ5γ3

γ0γ1 γ0γ2 γ0γ3 γ1γ2 γ1γ3 γ2γ3

.

Let us take the A in the form (this is a combination of the above sixteen ones)

A =
[

(M0γ
2 + m0) + γ1 (N0γ

2 + n0)
]

+

+ γ5
[

(M1γ
2 + m1) + γ1 (N1γ

2 + n1)
]

+

+ γ0
[

(M2γ
2 + m2) + γ1 (N2γ

2 + n2)
]

+

+ γ5γ0
[

(M3γ
2 + m3) + γ1 (N3γ

2 + n3)
]

. (17)
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With the notation

Γ0 = I , Γ1 = γ5 , Γ2 = γ0 , Γ3 = γ5γ0 , (18)

eq. (17) is written in the abridged form

A = Γi

[
(Mi γ2 + mi) + γ1 (Ni γ2 + ni)

]
. (19)

Now, let us substite (19) into eq. (16):

Γi

[
(−M∗

i γ2 + m∗
i ) + γ1 (−N∗

i γ2 + n∗i )
]

=

= eiαΓi

[
(miγ

2 −Mi) + γ1 (niγ
2 −Ni)

]
;

further it follow equations for unknown parameters:

Mi = −e−iα m∗
i , Ni = −e−iα n∗i .

Therefore, expression for a matrix A, relating spinor basis with any one Majorana’s is given by

[1]

A = Γi

[
(mi − e−iα m∗

i γ2) + γ1 (ni − e−iα n∗i γ2)
]

,

ΨM(x) = A(mi, ni, e
iα) Ψ(x) . (20)

Evidently, 17 arbitrary real parameters enter these formulas; there exists one additional restric-

tion, det A 6= 0.

4. Particular Majorana bases

Let us written down several simple bases of majorana: (only different from zero param-

eters are specified):

m0 = 1/
√

2, eiα = +1 , A =
1− γ2

√
2

, A−1 =
1 + γ2

√
2

,

γ0
M = +γ0γ2, γ1

M = +γ1γ2, γ2
M = γ2, γ3

M = +γ3γ2. (21)

There exist 16 such simple variants which can be represented by two tables:

eiα = +1

1/
√

2 = m0 m1 m2 m3 n0 n1 n2 n3

γ0
M = γ0γ2× +1 +1 −1 −1 +1 +1 −1 −1

γ1
M = γ1γ2× +1 +1 +1 +1 −1 −1 −1 −1

γ2
M = γ2× +1 −1 −1 +1 −1 +1 +1 −1

γ3
M = γ3γ2× +1 +1 +1 +1 +1 −1 +1 +1

(22)
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eiα = −1

1/
√

2 = m0 m1 m2 m3 n0 n1 n2 n3

γ0
M = γ0γ2× −1 −1 +1 +1 −1 −1 +1 +1

γ1
M = γ1γ2× −1 −1 −1 −1 +1 +1 +1 +1

γ2
M = γ2× +1 −1 −1 +1 −1 +1 +1 −1

γ3
M = γ3γ2× −1 −1 −1 −1 −1 +1 −1 −1

(23)

These Majorana bases are similar to each other: γ2
M = ±γ2 , the remaining three Dirac matrices

are multiplied by ±γ2. All 16 possibilities are presented.

5. Electrically neutral fermion with anomalous magnetic moment,

real or complex nature of the wave function

Let us briefly consider the fermion with additional electromagnetic characteristic, anoma-

lous magnetic moment. The known Petras formalism provides us with the following generally

covariant equation( [see [7,8])

{
γα(x) [ i (∂α + Γα(x)) +

e

~c
Aα(x) ] +

+ µ

[
−i

e

~c
σαβ(x)Fαβ(x)− 1

4
R(x)

]
− mc

~

}
Ψ(x) = 0 . (24)

In the context of the above analysis, special interest may represent one limiting case [10] :

namely, when electrical charge e and a free parameter µ approach zero and infinity respectively,

so that the quantity eµ remains finite. In the same way let µR(x) remain finite too:

ε =⇒ 0, e = ε, µ =
g

ε
= ∞ , R(x) = 4ε r(x) = 0 . (25)

Then, eq. (24) will take the forme

{
iγα(x) (∂α + Γα(x)) + g

[
− i

~c
σαβ(x)Fαβ(x)− r(x)

]
− mc

~

}
Ψ(x) = 0 . (26)

which does contain the standard electromagnetic term because the particle is electrically neu-

tral, e = 0. Interaction with external electromagnetic field is realized only through magnetic

moment term.

6. Conclusions

In Majorana basis, the gravitational part of the wave operator

[ iγα(x) ( ∂α + Γα(x) ) − g r(x) ]
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is real and it does not mix real and imaginary constituents of the wave function ΨM = ϕ++i ϕ− .

However, the mixing is done by the magnetic moment term:

[
iγα(x) ( ∂α + Γα(x) ) − g r(x)− mc

~

]
ϕ+ − 1

~c
σαβ(x)Fαβ(x) ϕ− = 0 ,

[
iγα(x) ( ∂α + Γα(x) ) − g r(x)− mc

~

]
ϕ− +

1

~c
σαβ(x)Fαβ(x) ϕ+ = 0 . (27)

Therefore, if electrically neutral fermion has non-vanishing magnetic moment, its 4-spinor

wave function must be complex-valued. It seems that real wave functions of Majorana type can

be associated only with a particle without any internal electromagnetic structure. Electrical

neutrality is insufficient for the particle be of the Majorana type.

It should be noted that the same peculiarities are seen in the theory of boson particles, of

spin 0 and spin 1, with additional electromagnetic structure – polarizability. The wave functions

for neutral particles of S = 0, 1 with non-vanishing polarizability are complex valued.
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Witt & R.Omnes, Paris, 1960, P. 159-226.

[6] Bogush A.A., Fedorov F.I. General form of the Lorentz group representation in bispinor space.

Dokl. AN BSSR. 1961. Tome 5. n. 8. P.327-330.

[7] Petras M. A note to Bhabha’s equation for a particle with a maximum spin 3/2. Czech. J. Phys.

5, 418-419 (1955)

[8] Bogush A.A., Kisel V.V, Tokarevskaya N.G., Red’kov V.M. Petras theory for a spin 1/2 particle

in a curved space-time. Vesti NANB, 1, 63-68 (2002), (in Rissian).

[9] All the matrices in the right-hand side are referred to spinor representation.
[10] Authors are grateful to Prof. Kuvshinov V.I. and Babichev L.F. for pointing out that such a limiting case

may be of interest by physical grounds.

206


