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Phenomenological consequences of the
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The models with the massive neutrinos and ”see-saw” mechanism are considered.
The influence of the neutrino anomalous magnetic moment (AMM) on the value of
the muon AMM is investigated. It is shown that the contributions coming from
the diagrams with the heavy neutrino exchange could lead to the value of the muon
AMM measured in BNL’01 experiment.

PACS numbers: 07.55.Jg, 25.30.Mr, 11.10.Lm
Keywords: muon anomalous magnetic moment, neutrino anomalous magnetic moment,
left-right model

It is well known that a neutrino with non-zero mass has non-trivial electromagnetic proper-
ties. In particular, the radiative corrections (RC) generate the dipole magnetic moment (MM)
for the Dirac massive neutrino. In the minimally extended standard model (SM) with SU(2)-
singlet right-handed neutrino the one-loop RC generate neutrino MM which is proportional to
the neutrino mass

µν =
3eGF mν

8
√

2π2
= 3× 10−19µ0

( mν

1eV

)
, (1)

where µ0 = e/2me is the Bohr magneton, mν (me) is the neutrino (electron) mass and the
charged lepton mass was set to zero under calculation. There are also models in which much
large values for magnetic moments of neutrinos are predicted. One of such examples is the left
right model (LRM). This model predicts light and heavy neutrinos in every generation. If one
neglects the contributions coming from the charged Higgs bosons then the expression for the
MM of the heavy neutrino follows from Eq. (1) under replacement

mν → mN sin2 ξ, (2)

where ξ is the mixing angle in the sector of the charged gauge bosons. Estimations of the heavy
neutrino masses, based on using the data of inverse muon decays and the constraints on the
masses of the charged Higgs bosons and W2 bosons, have been done in Ref. [1]. It was shown
that the current lower limit on the heavy neutrino mass reaches 92 GeV. Thus, the constraint
on the MM of the heavy neutrino has the form

µN ≤ 2.7× 10−8µ0. (3)

We note that up to now there are no experimental limitations on µN . The laboratory constraints
exist for light neutrino MMs only. At present the more stringent limitations on them come from
elastic neutrino-electron scattering experiments and are given by the expresions [2]

µνe ≤ 1.5× 10−10µ0, µνµ ≤ 6.8× 10−10µ0, µντ ≤ 3.9× 10−10µ0. (4)
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The goal of our work is to define the phenomenological consequences of the neutrino anoma-
lous magnetic moment (AMM). We shall carry out our investigation within the LRM. However,
the suggested scheme could be used for any gauge electroweak theory with massive neutrinos
and the ”sea-saw” mechanism.

We start with considering the influence of the neutrino AMM on the value of the muon
AMM. We recall that the muon MM is related to its intrinsic spin by the gyromagnetic ratio
gµ:

µ = gµ

( q

2m

)
S,

where gµ = 2 is expected for structureless, spin 1/2 particle of mass m and charge q = ±e. The
RC, which couple the muon spin to virtual fields, introduce an AMM defined by

aµ =
1

2
(gµ − 2).

The leading RC is the lowest-order (LO) quantum electrodynamic process involving the ex-
change of a virtual photon, the ”Schwinger term” giving aµ(QED; LO) = α/2π ≈ 1.16× 10−3.
The complete SM value of aµ, currently evaluated to a precision of approximately 0.6 ppm, in-
cludes this first-order term along with higher order QED processes, electroweak loops, hadronic
vacuum polarization, and other higher order hadronic loops. The difference between exper-
imental and theoretical values for aµ is a valuable test of the completeness of the SM. At
sub-ppm precision, such a test explores physics well above the 100 GeV scale for many SM
extensions. The muon AMM was measured in a series of three experiments at CERN (during
the years 1968-1977) and, most recently in E821 experiment at Brookhaven National Labo-
ratory (BNL) on Alternating Gradient Synchrotron. The last CERN-experiment (CERN-III)
used a uniform-field storage ring and electric quadrupoles to provide vertical containment for
the muons having the ”magic” momentum of 3.1 GeV/c. At this momentum, the muon spin
precession is not affected by the electric field from the focusing quadrupoles. The the results
of the CERN-III experiment were combined to give a 7.3 ppm measurement, which agreed
with theory. The present BNL experiment follows the general technique pioneered by CERN-
III. Data obtained at BNL, using nearly equal samples of positive and negative muons, were
used to deduce aexp

µ = 11659208.0(5.4)(3.3) × 10−10, where the statistical and systematic un-
certainties are given, respectively. The combined uncertainty of 0.54 ppm represents a 14-fold
improvement compared to previous measurements at CERN.

In order for theory to match such an accurate measurement, calculations in the SM have
to be pushed to their very limits. So, to compare with the experimental accuracy prediction
the contributions of all sectors of the SM (or its extension) have to be known very precisely.
Therefore, the SM expression for the muon AMM aSM

µ should include the following terms

aSM
µ = aQED

µ + aEW
µ + ahad

µ , (5)

in which aQED
µ = 11 658 4705.7(2.9)×10−11µ0 (see [3] and references therein). The electroweak

contribution from one and two loops are

aEW
µ = 15.4(0.1)(0.2)× 10−10,

where the first error comes from two-loops ekectroweak hadronic effects in the quarl triangle
diagrams and the second comes from the uncertainty on the Higgs boson mass [4]. The term ahad

µ

is mainly defined by virtual hadronic contributions to the photon propagator in 4th ahad
µ (V P1)

and 6th order, where the latter includes hadronic vacuum polarization ahad
µ (V P2) and light-

by-light scattering ahad
µ (LbyL). The hadronic contributions on the level of Feynman diagrams

arise through loops of virtual quarks and gluons. These loops also involve the soft scales, and
therefore cannot be computed reliably in perturbative QCD. The analysis made in Ref. [5]
showed a discrepancy between the ahad

µ (V P1) value obtained exclusively from e+e− data and
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that which arises if only τ data are used. We recall that the inclusion of τ -decay data introduces
systematic uncertainties originating from isospin symmetry breaking effects which are difficult
to estimate. For this reason some authors are not including τ data and are working with the
e+e− data only. At present two SM results for aµ are used

aSM
µ = 11659185.7(8.0)× 10−10, [6], (6)

aSM
µ = 11659182.0(7.3)× 10−10, [7]. (7)

These results represent the two slightly different e+e− based evaluations of the leading-order
hadronic vacuum polarization contribution. In the obtained value for aµ the largest theoretical
uncertainty, 0.55 ppm, is associated with first-order hadronic vacuum polarization. Introducing
the quantity

δaµ ≡ aexp
µ − aSM

µ ,

we obtain
δaµ

µ0

= (22.4± 10)× 10−10, (8)

δaµ

µ0

= (26.1± 9.4)× 10−10. (9)

So, these SM evaluations, based on e+e− hadronic cross sections, display 2.2 and 2.7 standard
deviations below the experimental result. Further we believe that there is some room for new
physics in the BNL-E-0821 results, i.e. the deviation of δaµ is attributed to effects of the physics
beyond the SM. We shall consider the (g − 2)µ anomaly within the LRM assuming that

(aQED
µ + ahad

µ )SM = (aQED
µ + ahad

µ )LRM , but (aEW
µ )SM 6= (aEW

µ )LRM .

In Ref. [8] it was shown that the observed value of the muon AMM could be explained by the
contributions coming from the Higgs sector of the LRM. Here we draw our attention to the
influence of the neutrino AMM on the AMM.

If the difference between the experiment and SM prediction is 2.2 and 2.7 σ, then at 90%
CL, δaµ/µ0 must lie in the range

9.61× 10−10 ≤ δaµ

µ0

≤ 35.19× 10−10, (10)

and

14.08× 10−10 ≤ δaµ

µ0

≤ 38.12× 10−10 (11)

respectively.
In the LRM neutrino could have both Majorana and Dirac nature. We consider the case of

the Dirac neutrino. For the sake of simplicity we assume that the mixing takes plase between
the muon and the tau lepton neutrino only. The neutrino AMM induced by the RC leads to
the appearance of the following terms in the effective interaction Lagrangian

Hadd =
∑

l

[
µνl

ψνl
(p)σλτqτψνl

(p′) + µNl
ψNl

(p)σλτqτψNl
(p′)

]
Aλ(q), (12)

where

σλτ =
i

2
(γτγλ − γλγτ ) .

The vertex function of the third order Λβ(p, p′) which correspond to the diagrams with the
W−

1 -boson exchange has the form

Λβ(p, p′) =
µg2

(4π)4me

∫ {
c2
ϕµ

c2
θν

γσ(1 + γ5)[i(p̂
′ − k̂)−mν2 ]σβτqτ [i(p̂− k̂)−mν2 ]γν(1 + γ5)

[(p′ − k)2 + m2
ν2

][(p− k)2 + m2
ν2

]
+
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FIG. 1: One-loop diagrams contributing to the muon AMM due to the light and heavy neutrinos.

+ (ϕµ → −ϕµ, θν → θN ,mν2 → mN2) +
(
ϕµ → ϕµ, θν → θν +

π

2
,mν2 → mν3

)
+

+
(
ϕµ → ϕµ +

π

2
, θν → θN +

π

2
,mν2 → mN3

)} δσν + kσkν/m
2
W1

k2 + m2
W1

d4k, (13)

where we have took into account the relation

νµ(x) = cϕµcθνν2(x)− sϕµcθN
N2(x)− cϕµsθνν3(x) + sϕµsθN

N3(x), (14)

ϕl is the mixing angle between the light and heavy neutrino in l-generation, θν (θN) is the mixing
angle between light (heavy) neutrinos belonging to different generations, sϕµ = sin ϕµ, cϕµ =
cos ϕµ and so on.

Of course, since spontaneously broken gauge theories are renormalizable, it is clear that the
matrix elements corresponding to the diagrams of Fig.1 should be finite. In fact the total bare
Lagrangian does not contain an interaction of the form of the magnetic terms. However, there
is an ambiguity in the finite parts of the graphs when computing in the unitary gauge. In
that gauge, the propagator of the W1-boson contains kσkν/m

2
W1

term, giving rise to a linearly
divergent piece. Although these divergent terms cancel (to be exact they are absorbed by
renormalization), the finite parts depend on the routing of the momenta through the graphs.
Such an ambiguity could be resolved in several ways. For example, one could use the procedure
of Ref. [9], where the W1-boson line does not carry any external momenta, and use the ξ-limiting
procedure which makes the replacement

kσkν

m2
W1

1

k2 + m2
W1

→ kσkν

m2
W1

m2
W1

+ M2

(k2 + m2
W1

)(k2 + M2)
,

where the limit M → ∞ being taken at the end of the calculation. The second way is to
compute the matrix elements in the Rξ gauge. In that gauge, the propagator of the W1-boson
is given by the expression

−i

[
δσν +

kνkσ

k2 + m2
W1

/ξ

(
1− 1

ξ

)]
1

k2 + m2
W1

,

and there are also contributions to the graphs coming from would-be Goldstone bosons with
mass depending inversely on ξ. Here we choose more simple way, namely, we compute directly
in the unitary gauge (ξ → 0) where the particle content is evident, and use the procedure
of Dyson [10] based on the expansion in external momenta of the subintegral expression and
subsequent subtraction of the divergent terms.

First we define the contribution to the muon AMM coming from the left-handed currents.
In doing so we are constrained by the diagonal elements of the neutrino AMM. Straightforward
but tedious calculation lead to the result

δaWL
µ

µ0

=
GF m2

W1

2
√

2π2me

{
c2
ϕµ

c2
θν

cos2 ξmν2µν2ν2

[∫ 1

0

(
x(1− x)2 − x3m2

ν2
m−2

W1

(x−m2
W1

m−2
µ )(x− 1) + xm2

ν2
m−2

µ

+
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+m2
µm

−2
W1

x(1− 3x) ln

∣∣∣∣
m2

W1
(1− x) + m2

ν2
x

(m2
W1
− xm2

µ)(1− x) + m2
ν2

x

∣∣∣∣
)

dx +
m2

µ

3m2
W1

]
+

+ (ϕµ → −ϕµ, θν → θN , µν2ν2 → µN2N2 ,mν2 → mN2) +
(
ϕµ → ϕµ, θν → θν +

π

2
,mν2 → mν3

)
+

+
(
ϕµ → ϕµ +

π

2
, θν → θN +

π

2
,mν2 → mN3

)
+

+c2
ϕµ

c2
θν

sin2 ξmν2

[∫ 1

0

(
x(1− x)2 − x3m2

ν2
m−2

W2

(x−m2
W2

m−2
µ )(x− 1) + xm2

ν2
m−2

µ

+

+m2
µm

−2
W2

x(1− 3x) ln

∣∣∣∣
m2

W2
(1− x) + m2

ν2
x

(m2
W2
− xm2

µ)(1− x) + m2
ν2

x

∣∣∣∣
)

dx +
m2

µ

3m2
W2

]
+

+ (ϕµ → −ϕµ, θν → θN ,mν2 → mN2) +
(
ϕµ → ϕµ, θν → θν +

π

2
,mν2 → mν3

)
+

+
(
ϕµ → ϕµ +

π

2
, θν → θN +

π

2
,mν2 → mN3

)}
. (15)

Now we difine the contribution caused by the right handed currents. Since the wave function
of the heavy muon neutrino is connected with the physical neutrino states by the relation

Nµ = sϕµcθνν2(x) + cϕµcθN
N2(x) + sϕµsθνν3(x) + cϕµsθN

N3(x), (16)

then to obtain the contribution in question one should fulfill the replacement

ξ → ξ +
π

2
, ϕµ → ϕµ +

π

2
(17)

in the expression standing in the braces of Eq. (15).
Taking into account an experimental data ranges for δaµ/µ0 (10) the next bounds for AMM

of heavy neutrino, due to diagrams with exchange by W−
1 −and W−

2 −bosons, were respectively
obtained:

9.61× 10−10 ≤ δaµ

µ0

≤ 35.19× 10−10,

mN = 100GeV, 9.6× 10−8 ≤ µ ≤ 3.5× 10−7;

mN = 1000GeV, 4.0× 10−7 ≤ µ ≤ 1.5× 10−6,

for W−
1 -diagram and

mN = 100GeV, 2.8× 10−14 ≤ µ ≤ 1.0× 10−13;

mN = 1000GeV, 9.6× 10−15 ≤ µ ≤ 3.5× 10−14,

for W−
2 -diagram.

Thus we have investigated the influence of the neutrino AMM on the value of the muon
AMM within the models with the massive neutrinos and the ”see-saw” mechanism. We have
shown that the BNL’01 result could be explained by the heavy neutrino sector contributions.
Comparing the theoretical and experimental results we have established the allowed values
regions for the neutrino sector parameters. In conclusion we note that although experiment
and theory have now both reached the same level of accuracy the present discrepancy between
the e+e− and τ based evaluations makes the interpretation of the BNL’01 result a delicate
issue as far as evidence for new physics signal. It is clear that the prospects for additional high
statistics data in the future, either from KLOE or from BaBar, are most welcome. On the
other hand, if the present discrepancy in the evaluations of ahad

µ (V P1) finds a solution in the
future, and if the experimental error is further reduced, then the theoretical uncertainty on the
light-by-light scattering contribution will constitute the next serious limitation for the (g− 2)µ

problem.
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