
Nonlinear Dynamics and Applications. Vol. 13 (2006) 140 - 145

The metric energy-momentum tensor for
particles with polarizabilities in the
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Within the covariant lagrangian formalism and relativistic theory of continuous
media the metric energy-momentum tensor for spinor particles with polarizabilities
in the electromagnetic field have been obtained. The equation of motion for spin-1/2
particles in the external electromagnetic field was determined.
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1. Introduction

Interaction of the electromagnetic field with a structural particle in the electrodynamic of
hadrons is based on the main principles of the relativistic quantum field theory. In the model
conceptions where basically the diagram technique is used a number of features for interaction
of photons with hadrons have been determined [1, 2]. However, the diagram technique is
mainly employed for description of the electromagnetic processes on a simplest quark systems.
In the case of interaction of the electromagnetic field with complex quark-gluon systems in the
low-energy region perturbative QCD methods are nonapplicable. That is why the low-energy
theorems and sum rules are widely used lately [3–5].

In the present time the low-energy electromagnetic characteristics which connect with hadron
structure, such as formfactor and polarizabilities, it is possible to obtain from nonrelativistic
theory [4, 5]. Passing on from the nonrelativistic electrodynamic to the relativistic field theory
one can make use the correspondence principle. But it is necessary step by step to investigate
a transition from the covariant Lagrangian formalism to the Hamiltonian one [6, 7].

Using the covariant Lagrangian of interaction of the electromagnetic field with structural
polarizable particle , the equation of motion and energy-momentum tensor have been obtained.
The theoretical-field properties of the energy-momentum tensor and the Hamiltonian in the
static limit have been determined.

2. Lagrangian

Let’s examine the interaction of the electromagnetic field with moving medium in the covari-
ant four-dimensional formulation. In this case it is possible to take advantage from relativistic
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Lagrangian of the electrodynamic of continuous media [8]

L′ = −1

2
(e2 − b2)− 1

2
e(ε̂− 1)e +

1

2
b(η̂ − 1)b, (1)

where ησν = (µ̂−1)σν .
If we take a vector

bσ = µσνhν ,

then the lagrangian (1) becomes

L′′ = −1

2
(e2 − h2)− 1

2
e(ε̂− 1)e +

1

2
h(µ̂− 1)h. (2)

Tensors εµν and µµν in expressions (1) and (2) are tensors of the dielectric and magnetic po-
larizabilities of media in the state of rest. Four-dimensional vectors eµ and hµ have components
[8, 9]

eµ {γ (Ev) , γ (E− [Hv])} , (3)

hµ {γ (Hv) , γ (H + [Ev])} , (4)

where γ = 1√
1−v2 , v- moving media velocity; eµ, hµ are connected with the electromagnetic

field tensors as eµ = F µνUν , hµ = F̃ µνUν . Four-dimensional velocity U has components

Uµ {γ,vγ} .

As the interesting question for us is the interaction of the electromagnetic field with polar-
izable particle so further it will be more convenient to use lagrangian (2).

We can write down the electromagnetic field tensor through vectors E and H [9]

F̂ =

(
0 −E
E H×

)
, (5)

where (H×)ij = εikjHk, E and H - are intensity vectors of electric and magnetic fields.

The tensors of electric α̂ and magnetic β̂ polarizabilities we inserting via relations:

ε̂ = I + 4πα̂, µ̂ = I + 4πβ̂. (6)

Thus the lagrangian (2) it is possible to present as [10, 11]

L = L0 + LI , (7)

where L0 = −1
2
(e2 − h2) = −1

4
F 2,

LI = −2π(eα̂e− hβ̂h). (8)

In this expressions are putting names of variables in the view: F 2 = FµνF
µν , eα̂e =

eµα
µνeν , hβ̂h = hµβ

µνhν .
The tensors αµν and βµν it is possible to represent in the diagonal form using metric tensor

gµν

αµν = gµνα, βµν = gµνβ.
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In such a case the lagrangian (8) of interaction of the electromagnetic field with polarizable
moving media becomes

LI = −2π(αe2 − βh2). (9)

Considering the correlation

2(e2 − h2) = F 2, (10)

we receive

LI = −2π

[
(α− β) e2 +

β

2
F 2

]
. (11)

If we use the lagrangian (7), expressions (9), (10) and Lagrange’s equation

∂µ
∂L

∂(∂µAν)
− ∂L

∂Aν

= 0, (12)

we find

∂µF
µν = j(M)ν = −∂µG

µν
I , (13)

where

Gµν
I = 4π [(α− β)(eµU ν − eνUµ) + βF µν ] . (14)

From the equations (13) for media in rest the definitions of charge density and current
density for bound charges are follow

ρ(M) = −4πα(∇E) = −4πα · divE, (15)

j(M) = 4π(α · ∂tE− β · rotH), (16)

and the Maxwell’s equations for media have the form:

rotE = −∂tH, divH = 0,

rotB =
∂D

∂t
, divD = 0, (17)

where D and B are vectors of electric and magnetic induction accordingly, D = ε̂E, B = µ̂H.
The equations (15) and (16) for media in rest one may note down in the covariant form if

we insert the tensor [9]

M̂ =

(
0 −P
P M×

)
, (18)

the components of the tensor (18) are vectors of electric and magnetic polarization M P.
Consequently the charge and current densities in this case become

j(M) =
∂P

∂t
− rotM, ρ(M) = −divP. (19)

In such a way the equation of motion for moving media has the form

∂µ(F µν + Gµν
I ) = jν , (20)
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and for media in rest the next form

∂µ(F µν + Mµν) = jν , (21)

where jν - current density of free charges.
To insert the tensor [8, 12, 13]

Gµν = dµU ν − dνUµ + εµνρσUρbσ, (22)

where dµ = εµσeσ, bρ = µρσh
σ, the lagrangian (2) for moving media one may to present by

way of

L = −1

4
F µνGµν = −1

2
(eε̂e− hµ̂h). (23)

3. The momentum-energy tensor and equation of motion

The lagrangian (2) helps us to determine the canonical momentum-energy tensor. Indeed
from the Noether’s theorem follows [7]

T µν =
∂L

∂(∂µAρ)
(∂νAρ)− gµνL. (24)

If we substitute (23) into (24) it gives

T µν = −Gµρ(∂νAρ)− gµν 1

4
(FρσG

ρσ). (25)

Now we determine the metric energy-momentum tensor

T̃ µν = −Gµρ(∂νAρ)− gµνL + ∂ρ(A
νGµρ). (26)

To realize a differentiation in (26) and using the equation of motion (20) we find

T̃ µν = F ν
ρ Gµρ +

1

4
gµν(FρσG

ρσ). (27)

It follows from the correlation (27) that the energy density for media in rest will be

T̃ 00 = ω =
1

2
(εE2 + µH2). (28)

Now we pass on to the quantum-mechanical description of interaction of the electromagnetic
field with polarizible particles. For this purpose we will use the correspondence principle [6, 7].
Extracting in the lagrangian (23) the contributions of electric and magnetic polarizabilities we
note down the lagrangian in the form:

LI = −2π(αFµρF
µ
σ − βF̃µρF̃

µ
σ )UρUσ, (29)

where F̃µρ = 1
2
εµρσκF

σκ, ε0123 = −1.
In accordance with the correspondence principle in the equation (29) we realize a replace-

ment

UρUσ → Θ̃ρσ =
1

2
(Θρσ + Θσρ), (30)
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where Θρσ is given by

Θρσ =
i

2
ψγρ

↔
∂σ ψ, (31)

here
↔
∂µ=

−→
∂µ −←−∂µ, γρ - the Dirac’s matrixes.

As a result for the case of interaction of the electromagnetic field with polarizable structural
spin-1/2 particle we find the following lagrangian

LI =
2π

m

[
αFµρF

µ
σ − βF̃µρF̃

µ
σ

]
Θ̃ρσ. (32)

The explicit form of the lagfangian (32) is agreed with the normalizing of the wave function
ψ(x).

Write out now the total lagrangian to define the moving of the charged, polarizable, spinor
particle in the electromagnetic field in the form of:

L =
i

2
ψ

∧↔
∂ ψ −mψψ − eψÂψ − 1

4
F 2 − 1

4
FµνG

(S)µν
I . (33)

For representation of the expression (33) was used the correlation

F̃µρF̃
µσ = FµρF

µσ − 1

2
δσ
ρ FµνF

µν .

Then the tensor (14) is determined by

G
(S)µν
I = −4π

m

{
(α− β)

[
F µσΘ̃ν

σ − F νσΘ̃µ
σ

]
+ βΘ̃ρ

ρF
µν

}
. (34)

Using the lagrangian (33) and antisymmetric tensor (34) the metric momentum-energy tensor
we shall define as

T̃ µν = Θ̃µν + F ν
ρ F µρ +

1

4
gµνF 2 − e

2
ψ(γµAν + γνAµ)ψ + T̃ µν

I , (35)

where

T̃ µν
I = F ν

ρ G
(S)µρ
I +

1

4
gµν(FρσG

(S)ρσ
I ). (36)

It follows from the expression (36) that if the particle impulse is equal to zero then for such par-
ticle interacting with the electromagnetic field the interaction energy because of polarizability
will be have the form [5]

T̃ 00
I = −2π(αE2 + βH2). (37)

The equation of motion which follows from the lagrangian (33) is given by

∂µF
µν = eψγνψ + j(M)ν , (38)

here j(M)ν = −∂µG
(S)µν
I .
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4. Conclusion

The correlations between the covariant Lagrangian and canonical energy-momentum tensor
have been determined. This fact on the basis of the correspondence principle has given a proper
definition of the low-energy presentation of the Lagrangian function.

To assume the covariant Lagrangian of interaction of the electromagnetic field with a polar-
izable particles as a basis in the Lagrangian covariant formalism the equation of motion have
been found.
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