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Incoherent solitons in two-component
amplifying-absorbing dense media
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The formation and stability of soliton-like pulses in a dense two-component
(amplifying-absorbing) medium is considered. The existence of incoherent solitons
in such media is shown, the soliton solutions being unstable with respect to small
perturbations.
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1. Introduction

Originally the concept of an optical soliton was introduced in studies of propogation of
pulses with their unchangeable parameters in conservative media (without absorbtion or am-
plification of energy). These solitons are steady-state pulses that are formed under certain
conditions. Namely, their formation is related to the competition and balance of some factors.
In particular, in Kerr-type media, this is the competition between diffraction or dispersion and
cubic nonlinearity. In the case of self-induced transparency (SIT) the competitive factors are
coherent absorption and stimulated emission [1].

Another kind of stationary (steady-state) wave packets (solitons) is associated with the
steady-state pulse propagation in amplifying-absorbing media. These solitons are called dissi-
pative ones. Besides the competition of above mentioned factors, there must be the balance
between the amplification and losses. Just this kind of solitons appears in the case of laser
generation under the mode-locking conditions. The passive mode-locking implies the presence
of two types of media in a resonator (amplifier and absorber). The absorber is responsible for
the formation of the shape of a pulse, while the amplifier compensates loss of energy of a pulse.

Generation of dissipative solitons is quite interesting from the practical point of view because
of their properties. Namely, their parameters (amplitude and duration) possess maximum
stability. For that reason any new soliton-type solution merits notice and is of grate interest
for possible applications.

In this report the results of our work are presented concerning laser generation of dissipative
optical solitons in two-component media. These media are assumed to be dense to such a degree
that it necessary to allow for the so-called local-field effects associated with the near dipole-
dipole (NDD) interactions [2]. This differentiates our approach from others. The problem
of existence of the incoherent solitons in dense single-component media was studied in [3, 4].
The authors of these papers have shown the necessity of finding the optimal ratio between
the detuning from resonant and Lorenz frequency. However the estimated value of the near
dipole-dipole interaction parameter is large enough (b ∼ 10) and this hampers the formation of
incoherent solitons in such media.

Below we will demonstrate that the formation of incoherent solitons is possible in two-
component dense media for suitable near dipole-dipole interaction parameters. Furthermore
we will show that the obtained soliton solution is in general unstable with respect to small
perturbations, but the instability growth rate can have a quite low value.
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2. Model

To describe propagation of an electromagnetic field we use Maxwell equation and to de-
scribe interaction of a wave with the media we use two Bloch subsystems for each medium.
The reduced system of equations for the complex amplitudes of electromagnetic field E and
polarizations P1 and P2 can be represented as
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with the initial conditions

P1,2 (−∞) = 0, W1,2 (−∞) = W01,02, (6)

where the real electromagnetic field and polarization a taken to be

Ê = E exp [−i(ωt− k0z)] + c.c., (7)

P̂i = Pi exp [−i(ωt− k0z)] + c.c., i = 1, 2. (8)

Indexes 1 and 2 denote amplifier and absorber respectively, W1,2 and µ1,2 are the population
inversions and dipole moments of a resonant transition, N1,2 is the concentrations of active and
passive atoms, k0 = ωn0/c is the wave vector of the electromagnetic field, v0 = c/n0 phase
velocity of light in the medium, n0 nonresonant part of the refractive index of the medium,
Ω1,2 = ω − ω1,2 are offsets of frequency ω relative to the centers of amplifying and absorption

lines, Ω
(1,2)
L = 4πµ2

1,2N1,2/3~ are the Lorentz frequency determining the frequency shift as a

result of the short range dipole-dipole interaction, T
(1,2)
2 are the transverse relaxation times,

lcav is the linear loss, ~ is the Planks’ constant.

We assume that the longitudinal relaxation times T
(1,2)
1 are much greater than the pulse

duration τ (τ ¿ T
(1,2)
1 ). In other words, we neglect the relaxation terms in equations (3) and

(5).
For the further consideration, it is convenient to represent the equations (1)-(5) in the form
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In what follows we shall use an approximate approach to solve system (9)-(13).

3. Approximate solutions of the Bloch subsystems

In this section we consider an approximate solution of the Bloch subsystem. We assume

that the propagation of a light pulse satisfying the condition T
(1,2)
2 ¿ τ . This means that the

polarization of active and passive atoms (P1 and P2) follow the change of the pulse field and

we can assume in (2) and (4) that |∂P1,2/∂t| ¿ |P1,2/T
(1,2)
2 |.

Here we in detail consider approximate solution of Bloch subsystem (10)-(13) which describes
the behaviour of passive atoms. And then we will easily obtain the approximate solution of
subsystem (10)-(11) by the corresponding replacement.

At first we assume that ∂P2/∂u = 0. Then from equation (12) we obtain expression for the
polarization

P2 =
iκTsEW2

1− i (∆2 + b2W2)
. (15)

Then equation (13) can be transformed to the form
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Under initial condition (6) the obtained equation, on separating the variables, can be inte-
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Next, it is assumed that the difference of populations changes negligibly during passage of
the pulse, i.e., W2 = W02 + w2, w2 ¿W02. Then equation (17) reduces to

W2 = W02 − w2 = W02


1− 4s2κT

|γ2|2
u∫

−∞

|E|2 du


 , (18)

where γ2 = 1− i (∆2 + b2W02).
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Accordingly, the polarization amplitude (15) is now determined by the expression

iP2 = −E
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Now we can readily obtain the approximate solution of Bloch subsystem (10)-(11). To get
the expression for the polarization, it is enough to substitute index 2 for 1 in equations (19)-(20).
Taking κ → 1 and s → 1, we obtain the expression for the polarization of the amplifier:
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(22)

Substituting polarizations P1 and P2 into (9), we obtain the final equation which describes
the propagation of a pulse in the two-component medium

∂E

∂z′
+ α

∂E

∂u
+ E


(ξ1 + iξ2) + (ξ3 + iξ4)

u∫

−∞

|E|2 du


 = 0, (23)

where

ξ1 = χ1 + ρχ5 + σ, ξj = χj + ρχj+4, j = 2..4 (24)

It is obvious that in such a way we can consider the case of multicomponent media with an
arbitrary number of types of active and passive atoms.

4. Incoherent soliton solution

Following the standard procedure, we represent the amplitude E of the propagating pulse
in the form

E(u) = A(u) exp (iϕ(u)) (25)
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Substituting equation (25) in to (23), we obtain two real equations for the envelop A(u) and
phase ϕ(u)

α
∂A(u)

∂u
+ A(u)


ξ1 + ξ3

u∫

−∞

A(u)2 du


 = 0,

α
∂ϕ(u)

∂u
+


ξ2 + ξ4

u∫

−∞

A(u)2 du


 = 0.

(26)

The solution of the system of the equations (26) is

A =
A0

cosh (u)
, ϕ =

1

α

(
ξ2u + ξ4A

2
0 (u + ln (cosh (u)))

)
, A2

0 = −ξ1

ξ3

> 0, α = −ξ1. (27)

Let us consider the obtained solution. The parameter α is determined by the inverse veloc-
ities of light and soliton. If it is less than zero, the the phase velocity of light is greater than
the velocity of the pulse and vice versa. The dependence of the normalized inverse velocity of
the pulse is shown in Fig.1.

FIG. 1. The evolution of the inverse normalized velocity of pulse versus its duration for decreasing (1)
and increasing (2) velocity of the pulse (when ω = 1014s−1, T

(1)
2 = T

(2)
2 = 10−10s, lcav = 4 ·10−4cm−1,

N1 = 1019cm−3, N2 = 4.1 · 1019cm−3, µ1 = 2 · 10−19 CGSE, µ2 = 1019 CGSE, Ω1 = Ω2 = 10−7s−1,
n0 = 1.2, W01 = −1, W02 = 1 and W02 = 0.96 ) for (1) and (2) correspondingly .

For the cubic approximation (18) to be valid, the following inequalities should be satisfied:

8A2
0T

|γ1|2
¿ 1,

8A2
0s

2κT

|γ2|2
¿ 1. (28)

In works [3, 4], strictly speaking, such conditions are not sufficiently obeyed because of large
values of the near dipole-dipole interaction parameter. In our case these conditions can be
easily fulfilled by choosing the appropriate values of the parameters W01 and W02.

At first, let us consider the particular case when the s = k = ρ = 1, b1 = b2 = b and
W01 = −W02 = W . It is sufficient to prove that we are able to choose appropriate parameters
∆1, ∆2 and b to satisfy inequality A2

0 (b, ∆1, ∆2,W) = −ξ1/ξ3 ¿ 1. Solution of the equation
A2

0 (b, ∆1, ∆2,W) = 0 with respect W is W = 2b/ (∆2 −∆1). Then the Taylor expansion of
A2

0 (b, ∆1, ∆2,W + w) over small parameter |w| ¿ 1 gives us the following expression

A2
0 (b, ∆1, ∆2,W + w) =

(
∆1 −∆2

2b
+

(∆1 + ∆2)
2 b

2 (∆1 −∆2)

)
w + O (w)2 . (29)
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It is clear that the conditions A2
0 > 0 and A2

0 ¿ 1 can be easily satisfied by choosing the
appropriate parameters ∆1, ∆2 and b. These conditions can be also met in the general case
(without any assumptions introduced before).

Fig.2 demonstrates the evolution of the square amplitude of the pulse A2
0 versus W01 and

W02. One can see that there is a wide region of appropriate parameters where the inequalities
(30) is valid (Fig.2 does not show the region of negative A2

0).

FIG. 2. The evolution of the square pulse amplitude A2
0 versus stationary values of the population

inversions W01 and W02 (when ω = 1014s−1, T
(1)
2 = T

(2)
2 = 10−10s, lcav = 4 · 10−4cm−1, N1 =

1019cm−3, N2 = 4.1 · 1019cm−3, µ1 = 2 · 10−19 CGSE, µ2 = 1019 CGSE, Ω1 = Ω2 = 10−7s−1, n0 = 1.2
and τ = 10−9s ).

5. Stability analysis

One of the most important questions of studying the formation of solitons is the stability
analysis. The small perturbations localized within the pulse envelop can destroy the stationary
pulse. To investigate the stability of solitons with respect to small perturbations, one should
linearize the equation(s) on the background of soliton solution and solve the spectral problem
for the differential operator(s) [5, 6].

To find the stability condition, let us assume a small shift from the steady-state solution:
|E(z, u)| = A(u) + f(z, u). Then, after the linearization we can obtain the equation for the
evolution of perturbation f(z, u):

∂f

∂z′
+ α

∂f

∂u
+ f


ξ1 + ξ3

u∫

−∞

A(u)2 du


 + 2ξ3A(u)

u∫

−∞

A(u)f du = 0. (30)

We will seek for the solution of equation (30) in the factorized form

f (z, u) = f0(u)
exp (λu)

cosh (u)
exp (2λξ1z

′). (31)

Substituting f (z, u) into (30) and increasing the order of the differential equation, we can
reduce the our problem to the eigenvalue one:

∂2f0(u)

∂u2
−

(
λ2 − 2

cosh2 (u)

)
f0(u) = 0. (32)
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The solution of the eigenvalue problem gives the eigenfunction f eigen
0 ∝ 1/ cosh (u) with the

eigenvalue λ2 = 1, in other words λ = ±1. This means that the obtained solutions are unstable.
The instability growth rate is proportional to the parameter ξ1:

λ = λ
4πk0µ

2
1N1τ

n2
0~

ξ1 =
4πk0µ

2
1N1T

(2)
1

n2
0~

(
σ

T
+
W01

|γ1|2 + sκρ
W02

|γ2|2
)

. (33)

The smallness of the instability growth rate λ can be provided by the choice of appropriate
parameters of active and passive media. Therefore the pulse can be regarded as an quasi-stable
one over sufficiently short distances of propagation. Here we should also note that the smallness
of the instability growth rate λ can be ensured if and only if there are absorbing and amplifying
media.

6. Conclusion

Summing up, we can conclude that the incoherent solitons can obtained in dense reso-
nant two-component media with some acceptable values of the constants of near dipole-dipole
interaction of both media. In comparison with the single-component case, the two- or multi-
component case allow one to overcome some arising difficulties.

The main one is the validation of cubic approximation (28), which guarantees the existence
of the incoherent soliton solutions. As was shown in [3], the necessary requirement is a large
value of near dipole-dipole interaction parameters in one-component dense resonant medium.
The estimated large value of near dipole-dipole interaction parameter does not guarantee the
validation of the cubic approximation. In case of two- or multi-component amplifying-absorber
medium the condition (28) can be easily met by choosing the appropriate values of the media
parameters.

The second difficulty is the minimization the value of the instability growth rate (33), which
ensures the propagation of incoherent solitons over sufficiently short distances, keeping the
practically stationary envelop. In is clear that we can easily minimize the value of the instability
growth rate by varying the media parameters (see equation (33)). These considerations may
be useful in choosing, for example, the length of a cavity of a soliton laser.
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