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Stability of Yang-Mills fields system in the
homogeneous (anti-)self-dual vacuum field
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Stability of Yang-Mills fields system in the vacuum field is investigated on the base
of Toda criterion, construction of Poincare sections and calculation of the maximal
Lyapunov exponents. The region of regular motion at low densities of energy is found
in this model. The dependence of the critical density of energy of the order-chaos
transition on value of the model parameter is obtained.
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1. Introduction

Yang-Mills fields model is inherently nonlinear in contrast to electrodynamics. It is chaotic
at any density of energy. This assumption was confirmed analytically and numerically [1–3].
Further research of spatially homogeneous field configurations [4] showed that Higgs field being
included in the Yang-Mills system leads to order-chaos transition at some density of energy
of classical gauge fields [5–7], while dynamics of gauge fields in the absence of Higgs field is
chaotic at any density of energy. Classical Higgs fields regularize chaotic dynamics of classical
gauge fields at densities of energy less than critical one and lead to appearance of order-chaos
transition.

Chaos in Yang-Mills fields [8] and vacuum state instability in nonperturbative QCD models
[9–11] are also considered in connection with confinement. Also it has been shown recently that
interaction of the constant chromo-magnetic field with axial field could generate confinement
[12]. These consequences indicate the existence of nonperturbative vacuum fields.

In this work the homogeneous (anti-)self-dual field [13] is regarded as a vacuum field in
Yang-Mills fields model. Using some approximations we constructed two dimensional model in
chromo-magnetic vacuum field and analyzed the stability of the model.

The system of Yang-Mills-Higgs fields in vacuum field under investigation was studied in
previous paper [14]. It was demonstrated that there are stable and chaotic regions in parametric
space. Their bounds were described analytically.

The system of Yang-Mills fields has an infinite number of degrees of freedom and it is too
complicated to be investigated directly. In order to reduce the number of degrees of freedom,
following other authors [15], we consider only spatially homogeneous fields. This model is a
particular case of the general one. Spatially homogeneous field models allow one to investigate
the main properties of inhomogeneous fields.

One more mechanism of the regularization of Yang-Mills fields is proposed in this work.
Homogeneous (anti-)self-dual field being included in Yang-Mills model regularize Yang-Mills
dynamics at low densities of energy. There is order-chaos transition at critical density of
energy in the system.
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2. Homogeneous (anti-)self-dual field

In this paper classical dynamics of SU(2) model gauge fields system is considered in the
homogeneous (anti-)self-dual vacuum field. Various properties of this solution of the Yang-
Mills equations in SU(2) theory were investigated originally by other authors [9, 16–18]. It was
demonstrated that self-dual homogeneous field provides the Wilson confinement criterion [19].
Therefore this field is at least a possible source of confinement in QCD if it can be shown that
such a field is a dominant configuration in the QCD functional integral.

Homogeneous self-dual field is defined by the following expressions [13]:

Ba
µ = Bnabµνxν ,

F a
µν = −2Bnabµν ,

where B - value of the field strength, na characterizes the direction of the field in color space,
tensor bµν - the direction in coordinate space.The latter has the following properties

bµν = −bνµ, bµνbµρ = δνρ,

b̃µν =
1

2
εµναβbαβ = ±bµν ,

where positive and negative signs in last expression correspond, respectively, to self-dual and
anti-self-dual cases.

The color vector na points in some fixed direction which can be chosen as (n1, n2, n3) =
(0, 0, 1) [16, 18]. The direction of the nonperturbative field in coordinate space can be chosen
arbitrarily. We will assume that it is directed along Z axis [16, 18, 19]. The tensor Fµν will be
the following:

Fµν =




0 −B 0 0
B 0 0 0
0 0 0 ±B
0 0 ∓B 0




It can be also rewritten in the following form

B = (B1, B2, B3) = (0, 0, B).

3. Model potential of the system

The Lagrangian of SU(2) gauge theory in Euclidean metrics is

L = −1

4
Ga

µνG
a
µν ,

where Ga
µν is a field tensor which has the following form:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAb

µA
c
ν .

In last expression Aa
µ, a = 1, 2, 3 are the three non-abelian Yang-Mills fields and g denotes the

coupling constant of these fields.
We consider the fluctuations around vacuum homogeneous self-dual field. Self-dual field is

regarded as external and it is taken into account by substituting modified vector potential in
the Yang-Mills Lagrangian

Aa
µ → Aa

µ + Ba
µ

where Aa
µ is the fluctuation to the vacuum field Ba

µ .
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We use the gauge:
Aa

4 = 0,

and consider spatially homogeneous field configurations [15]

∂iA
a
µ = 0, i = 1..3.

Our model of Yang-Mills fields in (anti-)self-dual field is constructed in Euclidean space. In
order to analyze the model by using analytical and numerical methods we should switch to
Minkowski space. We consider chromo-magnetic model. Thus we put chromo-electric field is
equal to zero. If A1

1 = q1, A2
2 = q2 and the other components of the perturbative Yang-Mills

fields are equal to zero, the potential of the model is:

V =
1

2
g2q2

1q
2
2 +

1

2
H2 − gHq1q2 +

1

8
g2H2(x2q2

1 + y2q2
2), (1)

where H - nonperturbative chromo-magnetic field strength, x and y - coordinates which play
the role of the parameters, q1 and q2 - field variables.

4. Stability of the model

4.1. Toda criterion

At first stability of the model is investigated using well known technique based on the Toda
criterion of local instability [20, 21]. This criterion being applied for potential (1) could give
us the value of the critical density of energy of order-chaos transition in the system. The
dependence of this value on the model parameter s = gHxy is shown on the FIG.1. The value
of the minimal energy in the system as a function of the model parameter is also demonstrated
on this figure (thick line).

FIG. 1. Critical density of energy of order-chaos transition (thin line) and minimal energy in the
system (thick line) as a function of the model parameter s = gHxy.

From the comparison of the minimal and critical energy one could obtain the following
consequences:

a) These energies are close to each other for s ∈ (−4, 4) and the system is chaotic at any
density of energy.

b) The critical density of energy is rather greater than minimal one and the system is regular
at small densities for s ∈ (−∞,−4) or s ∈ (4,∞) .

These consequences will be checked using numerical methods in next subsection.
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4.2. Numerical calculations

The system is investigated using Poincare sections and Lyapunov exponents for wide range
of model parameter values. These numerical methods could indicate global regular regimes
of motion whereas Toda criterion reveals only the local chaotic properties of the trajectories
[22]. Thus numerical methods are more precise for stability analysis. Results of the numerical

FIG. 2. Poincare sections for two dimensional Yang-Mills system in the vacuum field for s = 0,H =
1, (a)E = 0.005 and (b)E = 0.15.

FIG. 3. Maximal Lyapunov exponents for two dimensional Yang-Mills system in the vacuum field for
s = 0,H = 1, (a)E = 0.15 and (b)E = 0.68.

FIG. 4. Poincare sections for two dimensional Yang-Mills system in the vacuum field for s = 25.5, g =
0.1,H = 1, x = 15, y = 17, (a)E = 21 and (b)E = 100. Thin line - border of the phase space.

calculations for the system with model parameter s = 0 are shown on the FIG.2 and FIG.3.
It is seen that system is regular at small densities of energy contrary to Toda criterion. The
critical energy is equal to the energy of the vacuum field Ec = Evac = 1

2
H2. The system is

regular at energies E < Evac and chaotic otherwise.
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FIG. 5. Maximal Lyapunov exponents for two dimensional Yang-Mills system in the vacuum field for
g = 0.1,H = 1, x = 15, y = 17 and E = 100.

In the range of the large model parameter values numerical methods give us the following
results (FIG.4 - FIG.5). It follows that system is regular for high values of energy (Ec >> Evac)
as it was shown by Toda criterion. But the system is chaotic at value of energy greater than
critical one.

It is seen that Toda criterion rather good describes the region of the large values of model
parameter s and fails for s ∈ (−4, 4).

Numerical calculations have shown that there is a region of regular motion at low densities
of energy in our system at any value of the model parameter. Therefore, homogeneous (anti-
)self-dual field regularizes chaotic dynamics of Yang-Mills fields system.

5. Conclusions

In this work - homogeneous (anti-)self-dual field - was identified to regularize the chaotic
Yang-Mills dynamics. Yang-Mills model with this type of the vacuum field has the region of
regular motion at low densities of energy. There is order-chaos transition in the system for
all range of model parameters. The critical density of energy of this transition is equal to the
vacuum field energy for small parameters and significantly greater that one for large parameter
values. These consequences were obtain on the base of analytic and numerical calculations.
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