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Chaos assisted instanton tunneling is considered on the example of the double-
well potential driven by a monochromatic force. The expression for the ground
quasienergy doublet splitting determining the tunneling oscillations frequency is de-
rived in the framework of the instanton technique exploiting chaotic instanton solu-
tions.
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1. Introduction

Tunneling as inherently quantum phenomenon attracts much attention [1]. Its connection
with classical chaos in semiclassical regime has been discussed [2, 3]. A number of works
were devoted to semiclassical chaos assisted tunneling between symmetry related KAM-tori in
systems having mixed dynamics (well developed chaotic region coexists in phase space with
regular islands) [4–6]. To describe chaos assisted tunneling in systems demonstrating mixed
dynamics the multi-level model Hamiltonian, primarily proposed in [2], is often used [7]. Less
attention has been payed to semiclassical tunneling in KAM systems (chaotic region is not
widespread) [8]. Instanton technique [9, 10] was used in a very few works [11].

In this work we consider one-dimensional quantum system with double-well potential affected
by small periodic in time perturbation. We use methods developed to describe chaos in classical
Hamiltonian systems to investigate essentially quantum phenomenon of tunneling. It is achieved
in the framework of instanton technique, where solutions of Euclidian equations of motion
(instantons) play dominating role. For the systems driven by the periodic in time perturbation
the energy is no more the exact integral of motion and the language of quasienergies has to be
used instead [13, 14]. Energy approximately can be considered as an adiabatic invariant [15].
We study properties of the chaotic instanton solutions and calculate the ground quasienergy
doublet splitting.

There are papers devoted chaos assisted tunneling where some analytical predictions for
billiard systems basing on the path integral formulation of quantum mechanics are made [3].
Distinguishing feature of our work is analytical predictions for the system with smooth potential
and adoption for this purpose instanton technique [9].
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Hamiltonian of the considered model is given by the expression:

H(x, p) =
p2

2m
+

m ω2

8 a2
(x2 − a2)2 − ε x cos νt. (1)

Corresponding Schroödinger equation can be solved in the framework of the Floquet formalism.
However, in this work we exploit the chaotic instanton technique developed in the previous
papers [16–18].

2. Chaotic instanton solutions

Hamiltonian of the system (1) in the imaginary time has the form:

H(x, p) = H0 + V

H0 =
p2

2m
− mω2

8a2
(x2 − a2)2

V = εx cos ντ, (2)

where H0 denotes non-perturbed Hamiltonian of the system in Euclidean time and V is Eu-
clidean perturbation. In order to apply the chaotic instantons technique one has to calculate
the width of the stochastic layer replacing the separatrix of the non-perturbed system when
the potential V is applied [16–18].

Primarily let us consider Hamiltonian H0 without driving force. In this case the separatrix
do exists in the classical phase space of the system. As the result of the monochromatic driving
force application the stochastic layer replacing the separatrix appears. We restrict ourselves
by consideration of parameters values corresponding to the case of the homogeneous stochastic
layer.

For the non-perturbed system the instanton solution and its time derivative are given by
the expressions:

x(t) = −a tanh[
ω(τ − τ0)

2
] (3)

ẋ(t) = −ωa

2

1

cosh2[ω(τ−τ0)
2

]
. (4)

Corresponding action equals

I = I(H) =
2

π

x0∫

0

(2m (H +
m ω2

8 a2
(x2 − a2)2))1/2dx, (5)

where the turning point x0 is defined by the condition

H +
m ω2

8 a2
(x2

0 − a2)2 = 0. (6)

The frequency of the nonlinear oscillation is

ω(H) =
d H(I)

d I
= (

d I(H)

d H
)−1 (7)

|ω′| = |d ω

d I
| = | d ω

d H

d H

d I
| = ω| d ω

d H
| (8)
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Thus

|ω
′

ω3
| ∼ a

√
m

Hπ
. (9)

As the result of the direct but lengthy calculations the following expression for the local
instability parameter is obtained

K =
π ε ν |ω′|

ω3
C0, (10)

where

C0 = |
∫

∂ V

∂ x
ẋ sin ντ | (11)

and V (x) = x in the case considered. The substitution of the (3) into the (11) yields

C0 = |Im(

∞∫

−∞

−ωa

2

1

cosh2[ω(τ−τ0)
2

]
exp[ντ ])|. (12)

Calculating this integral we obtain

C0 = ωaπν exp[−πν

ω
]. (13)

Condition K ≥ 1 corresponds to the chaotic behavior of the system and lets us to estimate the
width of the stochastic layer

∆H =
εω
√

mπa2ν2 exp[−πν
ω

]

2
, (14)

which is proportional to the perturbation strength.

3. Ground quasienergy doublet splitting

The tunneling amplitude can be expressed as the following path integral in the imaginary
time:

A = 〈xf |e−Hτ0|xi〉 = N

∫
[Dx]e−S, (15)

where H is Hamiltonian and e−Hτ0 is the evolution operator of the system in Euclidean time,
S - the action, N is a normalization factor, [Dx] means integration over all functions x(t) with
boundary conditions x(−τ0/2) = xi, x(τ0/2) = xf .

Now we obtain Euclidean action. We have to consider both the separatrix solutions (instan-
ton and anti-instanton) and the solutions bellow the separatrix. Thus we obtain

S =

x+∫

x−

(2m(−H +
m ω2

8 a2
(x2 − a2)2))1/2dx, (16)

where

x± = ±a

√
1−

√
8H

mω2a2
. (17)

In order to simplify subsequent calculations we perform Taylor expansion of the result of inte-
gration and keep the first non-vanishing term:

S =
4

3ω
(
mω2a2

2
−H). (18)
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FIG. 1: Example of the multi-instanton configuration

Exploiting the standard instanton technique [19] for the calculation of the path integral (15)
one obtains:

[Dx] =
∏
n

dcn√
2π

,

〈xf |e−Hτ0|xi〉 = Ne−S
∏
n

εn
−1/2, (19)

where εn are eigenvalues of the operator − d2

dτ2 + V ′′(X). Then we change the integration over

c0 to τo. That leads to the additional coefficient
√

S0. Then we find final expression for the one
instanton contribution:

〈xf |e−Hτ0|xi〉 = (

√
m ω

π
e−m ωτ0/2)(

√
6

π

√
S e−S)mωdτ0. (20)

After that we have to take into account the contributions of the multi-instanton configurations
(see fig. 1). It should be mentioned that the sequence order of instantons and anti-instantons
in this problem is not arbitrary. They are considered as alternate. So the configuration is the
following: instanton then follows anti-instanton then again instanton and so on. As a result we
obtain [19]:

√
mω

π
e−mωτ0/2 rn

τ0/2∫

−τ0/2

mωdτn

τn∫

−τ0/2

mωdτn−1 . . .

τ2∫

−τ0/2

mωdτ1 =

=

√
mω

π
e−mωτ0/2 rn (mωτ0)

n

n!
, (21)

where r is the instanton density. The value of r is given by the following equation

r =

√
6

π

√
S e−S. (22)
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Since we consider the tunneling between different wells, it is necessary to sum expression (21)
only over odd n. Finally we have

〈−a|e−Hτ0|a〉 =
∑

n=1,3,...

√
mω

π
e−mωτ0/2 (mωτ0r)

n

n!
. (23)

In order to derive the tunneling amplitude and ground levels energies one should substitute the
action (18) to the amplitude (23) and integrate it over the energy H in limits of stochastic layer
width. Thus we obtain

A =
∑

n=1,3,...

∆H∫

0

(mωτ0

√
6
π

√
4
3ω

(mω2a2

2
−H) e−

4
3ω

(mω2a2

2
−H))n

n!
×

×
√

mω

π
e−mωτ0/2 dH. (24)

Where ∆H is given by (14). Calculation of this integral and subsequent simplifications give us
the following expressions for lowest energy levels in the wells:

E0 =
mω

2
(1− 4a exp

2(a2 e−
πν
ω
√

mπεν2 − a2mω)

3
×

×
√

mω

π
− e−

πν
ω

√
mεν2 (25)

E1 =
mω

2
(1 + 4a exp

2(a2 e−
πν
ω
√

mπεν2 − a2mω)

3
×

×
√

mω

π
− e−

πν
ω

√
mεν2 (26)

Thus the ground quasienergy doublet splitting is given by the formula:

∆E = 4mωa exp

(
2(a2 e−

πν
ω
√

mπεν2 − a2mω)

3

)√
mω

π
− e−

πν
ω

√
mεν2. (27)

This splitting (divided by Plank constant) equals the frequency of the tunneling oscillations
between symmetric and anti-symmetric superpositions of the two ground Floquet states local-
ized in the distinct potential wells. It is seen that the frequency exponentially grows when the
perturbation strength ε increases. This conclusion coincide with the result obtained for the
system having periodic in space potential [16, 17].

4. Conclusions

In this work the instanton technique exploiting chaotic instanton solutions was applied to ob-
tain the ground quasienergy doublet splitting and the frequency of the corresponding tunneling
oscillations between minima of the double-well potential driven by the external monochromatic
force. Exponential dependence of the frequency on the driving strength was derived. It co-
incides with the conclusion made for the system with periodic in space potential [16–18]. It
demonstrates the fact that the exponential repulsion of the low quasienergy levels is the uni-
versal phenomenon and does not depend on the potential of the system under consideration or
on the form of the periodic perturbation, but it is exclusively determined by the characteristics
of the chaotic instanton solutions, namely the corresponding stochastic layer width. It should
be emphasized that the conclusion made valid in the case when the stochastic layer is narrow
and does not have the significant islands of stability inside itself. As well the absence of the
low quasienergy level crossings is assumed.
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