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New approximate radial wave functions

for the modified Pöschl-Teller potential
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Satisfactory approximate radial wave functions are obtained for the modified
Pöschl-Teller potential which simulates a quantum dot. The approximation is based
on explicit summation of the leading constituent WKB series. Our approach repro-
duces the correct behaviour of the wave functions at the origin, at the turning points
and far away from the turning points
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1. Introduction

In the present work we consider the modified Pöschl-Teller potential

V (r) =
~2k(k − 1)

2mR2

(
1− 1

cosh2(r/R)

)
=
~2k(k − 1)

2mR2
tanh2(r/R) (1)

which is assumed to be a confining quantum dot potential. This potential quickly tends to
constant and leads to a finite number of energy levels. At the same time a confining potential
is usually considered as hard-wall [1] or harmonic oscillator [2] potential. In these cases the
number of energy levels is unphysically infinite.

The separated radial Schrödinger equation can be written in the form

−~2d2ψ(r)

dr2
+ 2m (V (r) + Vc(r)− E) ψ(r) = 0 (2)

which is identical to the one-dimensional Schrödinger equation with an effective potential given
by the sum of the origin potential V (r) and the centrifugal potential

Vc(r) =
~2l(l + 1)

2mr2
. (3)

However this equation does not permit the exact solutions.
One of the earliest and simplest methods of obtaining approximate eigenvalues and eigen-

functions of the radial Schrödinger equation is the WKB method (see, e.g., [3, 4] and references
therein). It is known [3, 5] that a suitable transformation of the initial equation improves
results of an approximation technique. We examine the power-law substitutions

r = qs, s > 0, ψ(r) = r(s−1)/2sΨ(q). (4)

∗E-mail: kudryash@dragon.bas-net.by

106



New approximate radial wave functions for the modified Pöschl-Teller potential

The transformed equation is

−~2d2Ψ(q)

dq2
+ Q(q)Ψ(q) = 0 (5)

where

Q(q) = 2ms2

(
q2s−2

[
~2k(k − 1)

2mR2
tanh2(qs/R)− E

]
+

~2

2mq2

[
(l + 1/2)2 − 1

4s2

])
. (6)

Of course, the exact solutions do not depend on some substitution. However, we are interesting
in the approximate solutions. We apply the improved WKB method to equation (5), not to
equation (2).

The WKB approach deals with the logarithmic derivative

Y (q) =
d ln Ψ(q)

dq
, Ψ(q) = c exp

(∫ q

Y (q′)dq′
)

(7)

which satisfies the nonlinear Riccati equation

−~2

(
dY (q)

dq
+ Y 2(q)

)
+ Q(q) = 0 (8)

where Q(q) is an arbitrary function of q (naturally not only the special expression (6)). The
WKB series

Y ±
as(q) = ~−1

(
±Q1/2 +

∞∑
n=1

~nY ±
n (q)

)
(9)

are the asymptotic expansions in powers of Plank’s constant ~ of two independent particular
solutions of the Riccati equation. The usual WKB approximations

Y ±
WKB(q) = ~−1

(
±Q1/2 +

N∑
n=1

~nY ±
n (q)

)
(10)

contain a finite number of leading terms Y ±
n (q) from the complete expansions Y ±

as(q). These
approximations are not valid at the turning points where Q(q) = 0 and at the origin q = 0.
While in most cases of improvements of the WKB method (see, e.g., [4–7]) the main purpose
is to achieve highest accuracy in eigenvalue calculation for the radial Schrödinger equation, our
aim is to construct satisfactory approximate eigenfunctions with the correct behaviour at the
origin, at the turning points and far away from the turning points.

2. New approximate logarithmic derivatives

The analysis of the well-known structure of leading Y ±
n (q) and recursion relations [8, 9]

allows us to reconstruct the asymptotic WKB series as the infinite sums

Y ±
as(q) = ±~−1Q1/2 +

∞∑
j=1

Z±
as,j(q) (11)

of new constituent (partial) asymptotic series Z±
as,j(q) [10, 11].
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The complete series Y ±
as(q) are approximated by a finite number of leading constituent series

Z±
as,j(q) in contrast to the use of a finite number of leading terms Y ±

n (q) in the conventional
WKB approach. Using notation

a(q) =
1

~2/3

Q(q)

|dQ(q)/dq|2/3
, (12)

b1(q) =
1

~2/3

dQ(q)/dq

|dQ(q)/dq|2/3
, b2(q) =

d2Q(q)/dq2

dQ(q)/dq
(13)

we are able to rewrite two first leading constituent series in the form

±~−1Q1/2 + Z±
as,1(q) + Z±

as,2(q) = b1(q)y
±
as,1(a) + b2(q)y

±
as,2(a). (14)

Direct verification shows that the series y±as,1(a) and y±as,2(a) satisfy equations

dy±as,1

da
+ (y±as,1)

2 = a, (15)

dy±as,2

da
+ 2y±as,1y

±
as,2 =

1

3

(
2a

dy±as,1

da
− y±as,1

)
. (16)

Eq.(15) is the Riccati equation for the logarithmic derivatives of linear combinations of the
well-studied Airy functions Ai(a) and Bi(a) [12]

y1(a; t) =
d

da
ln (Ai(a) + tBi(a)) . (17)

Eq. (16) has the solution

y2(a; t) =
1

30

[−8a2(y1(a; t))2 − 4ay1(a; t) + 8a3 − 3
]

(18)

As a result we get the new approximate logarithmic derivative

Yapp(q) = Y (q; t) = b1(q)y1(a; t) + b2(q)y2(a; t) (19)

with a mixture parameter t. The function Y (q; t) satisfies the following equation

−~2

(
dY (q; t)

dq
+ Y 2(q; t)

)
+ Q(q) = −~2

[(
d3Q(q)/dq3

dQ(q)/dq

)
y2(a; t)

+

(
d2Q(q)/dq2

dQ(q)/dq

)2

(y2
2(a; t)− 8

3
y2(a; t) +

4

3
ay1(a; t)y2(a; t)− 1

6
)

]
(20)

instead of equation (8).
The particular expressions

y±1 (a) = y(a;±i) (21)

and
y−1 (a) = y(a; 0), y+

1 (a) = y(a;∞) (22)

correspond to the conventional WKB series .
It is not surprising that the asymptotics of our approximation coincide with the WKB

asymptotics far away from the turning points. At the same time our approximation reproduces
the known [9] satisfactory approximation near the turning points.
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3. New approximate radial wave functions

Now we can construct the approximate radial wave functions for the bound states in the
case of the modified Pöschl-Teller potential when Q(q) is of the form (6).

First, we must reproduce the correct limiting behaviour at the origin. In this case we have
following exact expressions (r → 0, q → 0)

ψex(r) → rl+1, Ψex(q) → qsl+(s+1)/2, Yex(q) → sl + (s + 1)/2

q
. (23)

At the same time we can derive relations

a(q) → a0 =

(
s2

4
(l + 1/2)2 − 1

16

)1/3

, b1(q) → −2a0

q
, b2(q) → −3

q
,

Y (q; t) → −1

q
(2a0y1(a0; t) + 3y2(a0; t)) (24)

in the framework of our approach. We obtain the algebraic equation for determining the value
of t. Its solution is

t0 =
−c(l, s)Ai(a0) + a0(dAi(a0)/da0)

c(l, s)Bi(a0)− a0(dBi(a0)/da0)
(25)

where

c(l, s) = 1−
√

1 +
5

4

(
8a3

0 − 3

10
+ s(l + 1/2) + 1/2

)
.

Two real turning points q− and q+ (Q(q±) = 0) separate three regions.
In the first region where 0 < q < q− we select the unique approximate particular logarithmic

derivative Y (q; t0). In the second region where q− < q < q+ we must describe the oscillatory so-
lution of the original Schrödinger equation (2). Therefore in this case we select two approximate
particular logarithmic derivatives Y (q; +i) and Y (q;−i). In the third region where q > q+ we
must describe only the decreasing solution of the original Schrödinger equation (2). Therefore
in this case we select the approximate particular logarithmic derivative Y (q; 0) or Y (q;∞) in
accordance with sing of dQ(q)/dq. Note that in the case l = 0, s = 1 we put q− = 0.

Since in our approach the turning points are ordinary nonsingular points, no question of
connection formulas arises in contrast with the conventional WKB method. Matching particular
solutions at the turning points we obtain the continuous approximate radial wave function

ψapp(r) = Nappr
(s−1)/2sΨapp(q) (26)

where Ψapp(q) is represented by the following formulas

Ψ1(q) = cos φ0 exp

(
−

∫ q−

q

Y (q′; t0) dq′
)

(27)

if 0 < q < q− ,

Ψ2(q) = exp

(∫ q

q−

Y (q′; +i) + Y (q′;−i)

2
dq′

)

× cos

(∫ q

q−
ε
Y (q′; +i)− Y (q′;−i)

2i
dq′ − φ0

)
(28)
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if q− < q < q+ ,

Ψ3(q) =
1

2
(−1)n exp

(∫ q+

q−

Y (q′; +i) + Y (q′;−i)

2
dq′

)

× exp

(∫ q

q+

[
Y (q′;∞) + Y (q′; 0)

2
− ε

Y (q′;∞)− Y (q′; 0)

2

]
dq′

)
(29)

if q > q+ . Here q = r1/s, φ0 = π
3
− arctan t0, ε = dQ(q)/dq

|dQ(q)/dq| and Napp is a normalization constant.
We have the new quantization condition

∫ q+

q−
ε
Y (q; +i)− Y (q;−i)

2i
dq = π(n +

1

3
) + φ0, n = 0, 1, 2... (30)

which determines the spectral value of E implicitly.
Note that up to now a value of a substitution parameter s is not fixed. Numerical experiment

for the modified Pöschl-Teller potential shows that the best choice for l = 0 is s = 1 and the
satisfactory common choice for all l > 0 is s = 2. Thus the approximate eigenfunctions are
determined completely and we can perform application.

4. Application of the proposed approximation

It is convenient to apply our approximation with introducing the dimensionless quantities

x =
r

R
, e =

(
2mR2

~2

)
E, (31)

when the Schrödinger equation is rewritten in the form Ĥψ(x)−eψ(x) = 0 with the Hamiltonian

Ĥ = − d2

dx2
+ V (x) +

l(l + 1)

x2
, V (x) = k(k − 1) tanh2(x). (32)

Figures 1,2,3 demonstrate continuity of the proposed approximate radial wave functions and
their derivatives in the case k = 10. Here solid lines reproduce normalized ψapp(x) and dashed
lines reproduce dψapp(x)/dx.

FIG. 1: Radial wave function and its derivative for l = 0, n = 0.

We calculate relative virial error

v =
< ψapp| − d2

dx2 + l(l+1)
x2 |ψapp >

< ψapp|12xdV (x)
dx

|ψapp >
− 1 (33)
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FIG. 2: Radial wave function and its derivative for l = 1, n = 1.

FIG. 3: Radial wave function and its derivative for l = 2, n = 2.

with the help of the normalized approximate wave functions (< ψapp|ψapp >= 1). v is equal to
zero for the exact solutions.

We can also calculate the expectation values

eapp =< ψapp|Ĥ|ψapp > (34)

and < ψapp|Ĥ2|ψapp >. It should be stressed that < ψapp|Ĥ|ψapp >2 6=< ψapp|Ĥ2|ψapp > when
the wave functions are not exact. Now we define the relative discrepancy

d =
< ψapp|Ĥ2|ψapp >

< ψapp|Ĥ|ψapp >2
− 1. (35)

We estimate our approximation by means of the values of v and d. Our predictions are the
values of energy eapp. The number of bound states depends on a value of a potential parameter
k. If k = 10 then we have 15 bound states but if k = 5 we have only 3 states. Table 1
demonstrates validity of our approximation. In the particular case l = 0 we can compare our
values of eapp and the exact energies eexact from [13]. For k = 10 we have eexact = 26, 54, 74, 86.
In this case our approximation gives the high accuracy.
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Table 1: Properties of the proposed approximation (k = 10).

l n v d eapp

0 0 1.86 · 10−2 2.38 · 10−4 26.0025
0 1 8.23 · 10−3 5.14 · 10−6 54.0004
0 2 6.56 · 10−3 7.48 · 10−7 74.0001
0 3 6.79 · 10−3 3.32 · 10−7 86.0000
1 0 3.01 · 10−2 1.38 · 10−2 41.6859
1 1 1.44 · 10−2 1.02 · 10−4 65.5729
1 2 1.13 · 10−2 4.34 · 10−5 81.4828
1 3 1.08 · 10−2 1.31 · 10−5 89.2997
2 0 1.36 · 10−2 5.72 · 10−3 55.8579
2 1 8.30 · 10−3 2.16 · 10−5 79.6009
2 2 7.80 · 10−3 2.77 · 10−6 87.2306
3 0 7.41 · 10−3 2.75 · 10−3 68.4940
3 1 6.09 · 10−3 1.33 · 10−5 83.9108
4 0 4.17 · 10−3 1.37 · 10−3 79.4497
5 0 2.22 · 10−3 6.58 · 10−4 88.4510

5. Conclusion

We see that the performed reconstruction of the WKB series and subsequent explicit sum-
mation of the leading constituent (partial) series yield the satisfactory (qualitative and quan-
titative) description of wave functions in the case of the radial Schrödinger equation with the
modified Pöschl-Teller potential. The new way of using the old WKB series allows us to avoid
all known difficulties of the conventional WKB approach.
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